Time-varying demand for lottery: Speculation ahead of earnings announcements

Bibo Liu ${ }^{\text {a }}$, Huijun Wang ${ }^{\text {b,c }}$, Jianfeng Yu ${ }^{\text {a,*, }}$, Shen Zhao ${ }^{\text {d }}$
${ }^{\text {a }}$ PBCSF, Tsinghua University, 43 Chengfu Road, Haidian District, Beijing 100083, China
${ }^{\mathrm{b}}$ Faculty of Business and Economics, University of Melbourne, Level 11, 198 Berkeley Street, Carlton, VIC 3053, Australia
${ }^{\text {c }}$ Harbert College of Business, Auburn University, 405 W. Magnolia Ave. Auburn, AL 36849, United States
${ }^{\mathrm{d}}$ School of Management and Economics, Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Blvd, Longgang District, Shenzhen, China

ARTICLE INFO

Article history:

Received 16 January 2019
Revised 6 November 2019
Accepted 8 November 2019
Available online xxx

JEL classification:

G12
G14

Keywords:

Speculation
Lottery
Earnings announcements
Skewness

Abstract

Investor preferences for holding speculative assets are likely to be more pronounced ahead of firms' earnings announcements, probably because of lower inventory costs and immediate payoffs or because of enhanced investor attention. We show that the demand for lottery-like stocks is stronger ahead of earnings announcements, leading to a price runup for these stocks. In sharp contrast to the standard underperformance of lottery-like stocks, lottery-like stocks outperform non-lottery stocks by about 52 basis points in the 5 -day window ahead of earnings announcements. However, this return spread is reversed by 80 basis points in the 5 -day window after the announcements. Moreover, this inverted-V-shaped pattern on cumulative return spreads is more pronounced among firms with a greater retail order imbalance, among firms with low institutional ownership, and in regions with a stronger gambling propensity, and it is also robust after controlling for past 12 -month returns and various proxies for investor attention.

© 2020 Elsevier B.V. All rights reserved.

[^0]
1. Introduction

Many studies find that investors exhibit a preference for speculative assets, and thus these assets tend to be overvalued on average, leading to underperformance of these stocks relative to non-speculative assets. ${ }^{1}$ In this paper, we argue that investors' preferences for speculative stocks are time varying and are especially strong ahead of firms' earnings announcements. Because the positions are held for only a short period of time, trading ahead of earnings announcements reduces holding costs and inventory risk. Thus, speculative trading tends to increase prior to earnings announcements. Since lottery-like assets

[^1]are especially good for speculation, the excess demand for these stocks should be notably higher especially before earnings announcements. In addition, since earnings announcement events tend to grab retail investors' attention and lottery stocks are traded predominantly by retail investors, the attention-driven demand for lottery stocks could increase prior to earnings announcements. ${ }^{2}$ Moreover, because of inventory and idiosyncratic volatility concerns leading up to earnings announcements, arbitrageurs' ability to act against excess demand from noisy traders is weakened. ${ }^{3}$ Taken together, during the days ahead of earnings announcements, lottery-like assets should earn higher returns than non-lottery assets, which is exactly the opposite pattern of the usual underperformance of the lotterylike assets documented in the existing literature. ${ }^{4}$

By contrast, after earnings announcements, we should expect the usual underperformance of lottery-like assets. This is because there are again two reinforcing mechanisms. First, investors might be surprised by negative earnings news associated with lottery-like stocks. ${ }^{5}$ Second, after the earnings announcements, uncertainty about earnings news is resolved. Thus, potential concerns about inventory and idiosyncratic volatility also subside. As a result, the arbitrage forces are restored, and thus price reversal for lottery-like stocks is expected.

We empirically test this idea by using the following procedure. We first choose a few popular proxies for the speculative feature of a stock. Following Kumar (2009), we choose stock price level, idiosyncratic volatility, and expected idiosyncratic skewness as our measures for the degree of speculativeness of a stock. In addition, the maximum daily return proposed by Bali et al. (2011) is also a proxy for speculativeness. They show that this measure is negatively associated with future stock returns in the cross section. More recently, Conrad et al. (2014) show that jackpot probability is another good proxy for lottery features, and that firms with a high predicted jackpot probability tend to be overvalued on average and earn lower subsequent returns. Thus, we use these five popular proxies for a stock's speculative feature. In addition, based on these five individual proxies, we construct a composite z-score to proxy for the lottery feature.

[^2]Using these six measures, we find that the 5-day return spread between lottery-like stocks and non-lottery stocks is about 0.52% ahead of earnings announcements. In sharp contrast, the spread is reversed by 0.80% in the 5 -day window after earnings announcements. Fig. 1 plots the cumulative lottery spread during the $(-5,+5) 11$-day event window and presents the key result of our paper. This result is consistent with the view that the stronger demand for lottery-like assets ahead of earnings announcements drives up their stock prices, and later on stock prices are reversed because of the diminished demand for lottery-like stocks to gamble after the news announcements and earnings surprises. Since most anomalies tend to be more pronounced during the earnings announcements, ${ }^{6}$ the strong underperformance of the lottery-like stocks right after the earnings announcements is expected. However, the novel finding of our study is that ahead of the earnings announcements, we show a sharp price run-up for lotterylike stocks relative to non-lottery stocks. Most prior studies argue that lottery-like stocks could be overvalued and focus on the subsequent price reversal of these stocks. Our focus on pre-announcement periods provides useful information on the mechanism and timing of the overvaluation in the first place and its subsequent corrections. In particular, we identify specific periods when the overvaluation is exacerbated, whereas prior studies mostly focus on the subsequent reversals.

One might argue that the more intense speculative trading behavior may also hold for other anomaly characteristics, and thus there is nothing special about our results on the inverted-V-shaped cumulative lottery return spreads. For comparison, we also perform the same exercise for a set of prominent anomaly-related characteristics, in particular, value, momentum, profitability, and investment. We find that the cumulative return spreads based on book-to-market, past returns, profitability, and the opposite of investment over assets increase both before and after earnings announcements. Thus, the inverted-V shaped cumulative return spread is unique to lottery-related characteristics. This contrast in the shape of cumulative return spreads highlights the unique role of speculation ahead of earnings announcements for our lottery-related characteristics. This result can also help us distinguish alternative potential explanations for our documented pattern. In particular, a reasonable explanation should invoke the special property of the lottery characteristic, rather than simply and exclusively relying on overall changes in shortsale activities or investor attention around the earnings announcement periods.

In a closely related paper, Aboody et al. (2010) document that stocks with the strongest prior 12 month returns experience a significant positive average marketadjusted return before earnings announcements and a significant negative average marketadjusted return afterward. They argue that stocks with sharp past run-ups tend to attract investors attention and thus lead to higher returns for past

[^3]

Fig. 1. Event-time lottery portfolio excess returns over 11 trading days. This figure plots the cumulative buy-and-hold hedge portfolio returns (in percentages) during the $(-5,+5)$ event window centered at the earnings announcement date. Each quarter, firms with earnings announcements are divided into five portfolios based on each of six lottery proxies from the month prior to the announcements. If the earnings announcement date is in the first ten trading days of a month, we lag one more month and use the lottery proxies from two months prior to the announcements. For each day during the $(-5,+5)$ event window for each portfolio, we calculate the equal-weighted average buy-and-hold excess returns (in excess of the value-weighted return of the CRSP index) accumulated starting from day -5 . We plot the difference in the average returns between the top and bottom quintile lottery portfolios. We consider six lottery proxies: Maxret, Skewexp, Prc, Jackpotp, Ivol, and Z-score. Maxret is the maximum daily return; Skewexp is the expected idiosyncratic skewness from Boyer et al. (2010); Prc is the negative \log of one plus stock price (i.e., Prc $=-\log (1+$ Price)); Jackpotp is the predicted jackpot probability from Conrad et al. (2014); Ivol is idiosyncratic volatility from Ang et al. (2006); Z-score is a composite Z-score based on the previous five lottery proxies. Detailed variable definitions are described in the Appendix. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp, which is from 1988 to 2014.
winners before earnings announcements. Thus, if lottery stocks simply resemble extreme winner stocks, they could also attract more attention than non-lottery stocks. This heightened attention to lottery stocks could also lead to higher buying pressure and thus higher returns for lottery stocks than non-lottery stocks before earnings announcements. Thus, this pure attention channel could potentially produce our return pattern.

On the other hand, it is also possible that investors just have intrinsic preference for lottery stocks, especially before earnings announcements. To differentiate the intrinsic preference channel from the pure attention channel, we perform a double-sorting exercise to control for the effect of past returns. We find that after controlling for past returns, the average return spreads between lottery and nonlottery stocks (using the composite lottery index) before earning announcements is still 53.3 basis points, a magnitude similar to our original unconditional spread of 52 basis points. In addition, we also exclude the top decile winners from our sample and show that our results remain largely the same. More important, we use various direct proxies for investor attention and find that for firms with a similar level of attention before earnings announcements, lottery stocks still tend to earn higher returns than non-lottery stocks, suggesting that the intrinsic preference channel plays a significant role.

To further investigate the underlying mechanisms for our findings during the pre-event window, we use trans-
action data to examine the change in the retail order imbalance for lottery-like assets before the earnings announcements. The retail order imbalance captures the buying pressure from retail investors. We find that the retail order imbalance increases significantly more for lotterylike stocks than non-lottery stocks ahead of earnings announcements. Since there is stronger buying pressure from retail investors before earnings announcements for lotterylike stocks, we observe a positive lottery return spread during this period. Thus, the pattern in retail order imbalance before the earnings announcements is consistent with our findings on the return behavior for lottery-like and nonlottery stocks. Moveover, the above pattern on retail order imbalance still holds after we control for various proxies for investor attention, lending support for the intrinsic preference channel.

In addition to the retail order imbalance in stocks, we also use option data to gauge gambling behavior around earnings announcements. In particular, we study the daily adjusted volume of short-term out-of-the-money (OTM) call options during the $(-5,+5)$ event window centered at the earnings announcement date. We find that the adjusted volume increases ahead of earnings announcements and decreases after the announcements, consistent with the notion that gambling behavior is more prominent ahead of earnings announcements. In addition, the implied volatility and retail order imbalance of OTM call options also increase before earnings announcements and are
subdued afterward, suggesting a stronger demand for these lottery-like assets ahead of earnings news.

Kumar et al. (2011) argue that gambling preferences should be stronger in regions with a higher concentration of Catholics relative to Protestants since the Catholic religion is more tolerant of gambling behavior. Indeed, they show that investors located in regions with a higher Catholic-Protestant ratio (CPRATIO) exhibit a stronger propensity to hold stocks with lottery features. Thus, if our positive lottery return spread ahead of earnings announcements is driven by the excess demand from investors with gambling preferences, we should expect that this positive lottery spread is higher for firms located in high CPRATIO regions where local speculative demand is expected to be stronger because of local bias. Using Fama-MacBeth regression analysis, we indeed confirm this hypothesis.

Using data from 38 countries, we also explore the cross-country variation in the pre-announcement lottery premium documented in this study. In particular, we investigate the pattern in our lottery return spreads around earnings announcements for 38 countries. We find that among countries with a stronger preference for lottery (i.e., countries with high stock market turnover), the preannouncement lottery premium is much stronger than that among countries with a weaker preference for lottery, consistent with the intrinsic preference channel.

Since individuals tend to exhibit stronger preferences for lottery-like stocks, we expect this inverted-V-shaped pattern on cumulative lottery return spreads to be more pronounced among firms with lower institutional ownership. In addition, lower institutional ownership more severely impedes arbitrage forces, and thus the price runup for lottery-like stocks ahead of earnings announcements is also expected to be stronger among this group of stocks. Indeed, we find that the inverted-V-shaped pattern is stronger among firms with lower institutional ownership, although it is still significant among firms with higher institutional ownership.

Lastly, since the lottery-like stocks can outperform nonlottery stocks ahead of earnings announcements, by taking this fact into account, one could improve the traditional strategy that bets against lottery-like stocks. In particular, we should bet for lottery-like stocks ahead of earnings news and revert to the traditional betting-againstlottery strategy during other times. We show that this new strategy improves substantially upon the standard betting-against-lottery strategy. In particular, the monthly strategy return is improved from 1.09% to 1.50% for the composite lottery proxy.

In terms of related literature, our paper is related to a long list of papers on lottery-related anomalies. A large strand of literature documents that lottery-like assets have low subsequent returns. Boyer et al. (2010) find that expected idiosyncratic skewness and future returns are negatively correlated. Bali et al. (2011) show that maximum daily returns in the previous month are negatively associated with future returns. ${ }^{7}$ More recently,

[^4]Conrad et al. (2014) document that firms with a high probability of extremely large returns (i.e., jackpot) usually earn abnormally low future returns. All of these empirical studies suggest that positively skewed stocks can be overpriced and earn lower future returns. ${ }^{8}$ In contrast to this literature, we show that lottery-like stocks actually outperform non-lottery stocks ahead of earnings announcements. We also show that by taking this pre-announcement pattern into account, we can significantly improve the traditional lottery strategy. Further, Doran et al. (2012) show that investors' preferences for lottery features are stronger during January because of the New Year gambling effect and lottery-like stocks outperform in January. Our study differs by investigating the news-driven time-variation in lottery demand.

Our paper is closely related to Aboody et al. (2010), who document that extreme winners, the attentiongrabbing stocks, experience a significant positive average marketadjusted return during the five trading days before their earnings announcements and a significant negative average marketadjusted return in the five trading days afterward, a pattern similar to ours using lottery stocks. We show that after controlling for past returns and controlling for many direct proxies for investor attention, the pre-announcement lottery premium remains quantitatively similar. Thus, our results are driven by neither the correlation of lottery stocks with past winners nor the pure attention-grabbing feature of the lottery stocks.

Prior studies find that most anomalies tend to be more pronounced around earnings announcements. For example, La Porta et al. (1997) find that the value strategy performs much better around earnings announcements. Berkman and McKenzie (2009) find that firms with high differences of opinion earn significantly lower returns around earnings announcements than firms with low differences of opinion. More recently, Engelberg et al. (2018) use a large set of stock return anomalies and find that anomaly returns are about six times higher on earnings announcement dates. On the one hand, the pattern of more pronounced anomaly returns around earnings announcements is consistent with biased expectations, which are at least partially corrected upon news arrival. On the other hand, this pattern could also be consistent with a disproportionally large risk associated with earnings news. However, our results are hard to reconcile with a pure risk-based story since the sign on the return spread switches before and after the event. It is difficult to build a risk-based model in which lotterylike stocks are more risky before earnings announcements and less risky after earnings announcements. ${ }^{9}$ Our paper is

[^5]also related to So and Wang (2014) who study the shortterm return reversal effect ahead of earnings announcements. They argue that market makers demand higher expected returns for the liquidity provision prior to earnings announcements because of the increased inventory risk ahead of the anticipated earnings news. Indeed, they document a strong increase in short-term return reversals ahead of earnings announcements. We differ by focusing on the time-varying demand for lottery-like stocks rather than the time-varying liquidity provision. Moreover, whereas they show that the short-term reversal effect is stronger ahead of earnings announcements, we show that the lottery-return spread is reversed ahead of earnings announcements, compared with other periods.

Lastly, our paper is also related to a recent study by Rosch et al. (2017). They hypothesize that stock-specific information events (such as earnings announcements) may affect price efficiency because inventory and idiosyncratic volatility concerns leading up to the event could temporarily challenge arbitrageurs' ability to act against predictable patterns in returns and price deviations from the efficient market benchmark. Thus, the stock market is less efficient ahead of earnings announcements. Our results are consistent with their general view since lottery-like stocks are indeed more overvalued ahead of earnings news. We differ from them by focusing on one specific set of firm characteristics, i.e., firm-level lottery features, and we provide an in-depth study of investor demand for lottery around earnings announcements.

2. Data and definitions of key variables

This section describes our data sources and empirical measures. We also provide summary statistics for the key variables used in our subsequent analysis.

2.1. Data

Our sample includes quarterly earnings announcements made by firms listed on the NYSE, Amex, and Nasdaq from January 1972 to December 2014. The sample includes only common stocks, and to reduce the potential effects of penny stocks, we delete stocks with a price of less than $\$ 1$ per share at the end of the month prior to the earnings announcements. Our data come from several data sources. Earnings announcement dates are from the Compustat Quarterly files. Stock returns data are from Center for Research in Security Prices (CRSP) and accounting data are from Compustat. Analyst data are from the Institutional Brokers' Estimate System (IBES) from 1985 to 2014. ${ }^{10}$ Institutional ownership data are from the Thomson Financial 13F file from 1980 to 2014. The transaction data are from the Institute for the Study of Securities Markets (ISSM) from 1983 to 1992 and the Trade and Quote

[^6](TAQ) data from 1993 to 2000 for NYSE and Amex common stocks. ${ }^{11}$ Population density data are from the US Census Bureau. The Facebook Social Connectedness Index (SCI) data are from Facebook. ${ }^{12}$ Religious composition data are from "Churches and Church Membership" files from the American Religion Data Archive (ARDA). Options data are from the OptionMetrics database. Option order flow data are from the International Securities Exchange (ISE) Open/Close Trade profile. Monthly mutual fund total net assets and returns data come from the CRSP Survivor-BiasFree US Mutual Fund Database. Monthly hedge fund total net assets and returns data come from the Thomson Reuters Lipper Hedge Fund (TASS) Database. Our firm-level stock and accounting data for non-US companies come from the Compustat Global database. The earnings announcement dates for non-US companies are from Bloomberg. The stock market turnover ratio of domestic shares data for international countries are from the World Bank.

2.2. Lottery measures

For US stocks, we use six variables to proxy for the lottery feature of stocks following prior studies. These measures include the maximum daily return (Maxret), expected idiosyncratic skewness (Skewexp), stock price (Prc), the probability of jackpot returns (Jackpotp), idiosyncratic volatility (Ivol), and a composite z-score (Z-score) based on these five variables. This section briefly describes how these measures are calculated. More details on the construction of these measures are provided in the Appendix.

Maxret: Bali et al. (2011) document a significant and negative relation between the maximum daily return over the previous month and the returns in the future. They also show that firms with larger maximum daily returns have higher return skewness. It is conjectured that the negative relation between the maximum daily return and future returns is due to investors' preference for lotterylike stocks. Following their study, we use each stock's maximum daily return (Maxret) as our first measure of the lottery feature.

Skewexp: Boyer et al. (2010) estimate a cross-sectional model of expected idiosyncratic skewness and find that it negatively predicts future returns. We use the expected idiosyncratic skewness estimated from their model (model 6 of Table 2 on page 179) as our second measure. Following their estimation, this measure starts from 1988.

Prc: Stocks with low prices attract gamblers because they create an illusion of more potential for future price increases, so we use each stock's closing price as our third measure of the lottery feature. Low-price stocks are lottery-like assets, so we take a nonessential transformation of stock prices in our empirical tests to be consistent with other proxies, that is, $\operatorname{Prc}=-\log (1+$ Price $)$.

[^7]Jackpotp: Conrad et al. (2014) show that stocks with a high predicted probability of extremely large payoffs earn abnormally low subsequent returns. Their finding suggests that investors prefer lottery-like payoffs that are positively skewed. Thus, we use the predicted probability of jackpot (log returns greater than 100% over the next year), which is estimated from their baseline model (Panel A of Table 3 on page 461), as our fourth measure.

Ivol: Stocks with high idiosyncratic volatility are attractive to investors with gambling preferences because the high volatility creates the misconception of a high probability of realizing high returns. Following Ang et al. (2006), we compute idiosyncratic volatility (Ivol) as the standard deviation of daily residual returns relative to the Fama and French (1993) three-factor model and use it as our fifth measure of the lottery feature.

Z-score: The Z-score is a monthly composite lottery measure calculated as the average of the individual z scores of the previous five lottery measures: Maxret, Skewexp, Prc, Jackpotp, and Ivol. Each month for each stock, each one of the five lottery measures is first converted into its rank and then standardized to obtain its z-score. We require a minimum of three nonmissing lottery measures out of five to compute this measure.

2.3. Attention measures

We use five measures to capture investor attention. Our first proxy is a dummy for media coverage in the Dow Jones edition of RavenPack news data. Barber and Odean (2008) find that media coverage catches investor attention, and individual investors are net buyers of stocks in the news. Extreme events are likely to attract investor attention, so following Bali et al. (2019), we use the magnitude of the most recent earnings surprise to proxy for investor attention. Since more social interaction is more likely to attract more attention, following Bali et al. (2019), we also use population density (PD) and the social connectedness (SCIH) of a firm's headquarters as another proxy for attention. Lastly, we construct a monthly composite measure for attention (Attn) calculated as the average of the individual z-scores of these four attention measures. More details on the construction of these measures are provided in the Appendix.

2.4. Retail order imbalance

To measure retail order imbalance (RIMB), we follow Hvidkjaer (2006) and use the imbalance inferred from the transaction data from ISSM and TAQ. We only include NYSE and Amex common stocks from 1983 to 2000. We apply the standard filters and delete trades and quotes with irregular terms and those with likely erroneous prices.

The RIMB is computed in two steps. ${ }^{13}$ In the first step, all eligible trades are classified as small, medium, or large trades using a variation of the Lee (1992) firm-specific dollar-based trade-size proxy. Each month, we form five

[^8]portfolios based on firm size at the end of the previous month and then use the size-quintile-specific dollar value in the following table as the breakpoints to identify small, medium, or large trades.

Firm-size quintile	Small	2	3		4
Large					
Small trade cut-off, in \$	3400	4800	7300	10,300	16,400
Large trade cut-off, in \$	6800	9600	14,600	20,600	32,800

All trades are further classified as either buy-initiated or sell-initiated based on the tick and trades rule according to the Lee and Ready (1991) algorithm. A trade is sellinitiated if it is executed at a price below the quote midpoint and is buy-initiated if it is executed at a price above the quote midpoint. If a trade is executed at the quote midpoint, we use the tick rule: it is sell-initiated if the trade price is below the last executed trade price; it is buy-initiated if the trade price is above the last executed trade price. This procedure classifies all eligible trades into one of six categories: buy-initiated small trades, sellinitiated small trades, buy-initiated medium trades, sellinitiated medium trades, buy-initiated large trades, and sell-initiated large trades. In the second step, for each stock during each window period, we compute its retail order imbalance as the difference between the buy-initiated and sell-initiated small-trade volume divided by the sum of the buy-initiated and sell-initiated small-trade volume: RIMB $=($ BUYVOL - SELLVOL $) /($ BUYVOL + SELLVOL $)$, where BUYVOL and SELLVOL are the sum of daily buy-initiated and sell-initiated small-trade volume of this stock during each window period, respectively. To capture the change in the sentiment among retail investors, we use the average RIMB of the six five-day windows starting from 30 days after the earnings announcements and ending 59 days after as the benchmark RIMB and subtract it from the RIMB during the $(-5,-1)$ pre-event or the $(+1,+5)$ post-event window to get the abnormal RIMB during the corresponding event window. ${ }^{14}$

2.5. Option volume, implied volatility, and option retail order imbalance

Our option volume and implied volatility data are from OptionMetrics from 1996 to 2014. Out-of-the-money (OTM) call options are particularly attractive to investors with a gambling preference because the highly skewed payoffs make them like lottery-like assets. If investors are

[^9]more likely to gamble before earnings announcements, then they might tend to trade more OTM calls than during other periods as well. To capture this sentiment, we examine the adjusted daily volume and implied volatility for all short-term OTM call options expiring in the following month. An option is defined as OTM if its strike price to stock price ratio is greater than 1.05 . We remove options with nonstandard settlement, options that violate basic arbitrage conditions, and options with zero open interest, missing bid, or offer prices. After applying these filters, for each stock at each day, we aggregate the trading volume for all of its valid short-term OTM calls. The adjusted volume is then computed as the percentage change in daily volume from its past 3-month moving average to remove the upward time trend of the trading volume. Lastly, we average the adjusted volume across all stocks for each event day. Similarly, we average the implied volatility across all valid short-term OTM calls for each stock on each day and then average across all stocks for each event day.

The option abnormal retail order imbalance measure is computed using data from the ISE Open/Close Trade Profile from 2008 to $2014 .{ }^{15}$ The ISE data contain daily information about buy and sell trading volumes for each option traded at the ISE disaggregated by different customer types (market maker, firm, customer, and professional customer), different size brackets (small, medium, and large), whether the trade is to open new positions or close existing positions (open buy, open sell, close buy, and close sell), along with the basic characteristics of the option including expiration date, strike price, option type (call or put), and moneyness. We focus on the short-term OTM call options expiring in the next month. To measure the trading volumes at the stock level, we first convert the trading volume (in terms of the number of option contracts) in the ISE to the number of underlying shares. We then aggregate open buy and open sell shares for all of their valid short-term OTM calls for different customer types for each underlying stock on each day. The buy-initiated and sell-initiated retail trading volumes are the open buy and open sell shares by the customer type identified as customers, respectively. The retail order imbalance is computed by taking the difference between the daily buy-initiated and sell-initiated retail trading volume divided by the sum of the daily buyinitiated and sell-initiated retail trading volume. We further normalize this retail order imbalance by subtracting the benchmark retail order imbalance, which is the average daily retail order imbalance starting from 30 days after the earnings announcements and ending 59 days after. Lastly, we average the abnormal retail order imbalance across all stocks for each event day.

2.6. Religious characteristics

Our main religion proxy is the Catholic-Protestant ratio (CPRATIO) as defined in Kumar et al. (2011). The Glenmary Research Center collects detailed county-level data on the number of churches and the number of adherents to each

[^10]church for the years $1971,1980,1990,2000$, and 2010, and publishes the data in "Churches and Church Membership" files in the American Religion Data Archive (ARDA). We follow previous literature (e.g., Hilary and Hui, 2009, Kumar et al., 2011 to linearly interpolate the data in the intermediate years. We further merge this religion variable with the firm headquarters location data from Compustat and use it as the firm-level CPRATIO.

2.7. International sample

Our international sample includes 38 countries. ${ }^{16}$ For each non-US country, we only include common stocks traded on the major national stock exchanges following Gao et al. (2018). We convert all returns, prices, and accounting variables from local currency to US dollars. We further exclude micro-cap firms that have a market equity or price below 5% in each quarter in a country. To avoid extreme values, returns are set as missing if falling out of the 0.1 and 99.9 percentiles. The earnings announcement dates for non-US countries come from Bloomberg. To avoid potential bias from having portfolios with too few assets, we require a minimum of eight quarters and a minimum of 30 stocks each quarter for each country. Our international sample starts in 1999.

To measure the lottery feature of non-US stocks, we use three proxies similar to our definitions for US stocks: Maxret, Prc, and Ivol. ${ }^{17}$ Maxret is the maximum daily return within a month, and Prc is the negative log of one plus the month-end stock price, that is, $\operatorname{Prc}=-\log (1+$ Price)). To compute Ivol for each country, we first specify a local version of the Fama-French three-factor model including a local market excess return factor, a local size factor, and a local value factor, following Ang et al. (2009) and Gao et al. (2018). The market factor is the value-weighted return of the local market portfolio minus the one-month US T-bill rate. The country-specific size is the return spread between the smallest and biggest local firms, and the value factor is the spread between the local value and growth firms. Idiosyncratic volatility (Ivol) is computed as the standard idiosyncratic volatility measure, that is, the standard deviation of residuals from the daily local factor model within a month with a minimum requirement of ten nonmissing values. After we obtain Maxret, Prc, and Ivol for each stock, we construct a composite z-score as the average of these individual z-scores.

2.8. Summary statistics

Table 1 presents the summary statistics. Our sample includes a total of 643,729 quarterly earnings announcements. $\operatorname{EXRET}(-1,+1), \quad \operatorname{EXRET}(-5,-1), \quad$ and

[^11]
Table 1

Summary statistics
This table reports the summary statistics for our sample of firm-quarter observations. $\operatorname{EXRET}(-1,+1)$, $\operatorname{EXRET}(-5,-1)$, and $\operatorname{EXRET}(+1,+5)$ are the buy-and-hold excess returns for $(-1,+1),(-5,-1),(+1,+5)$ three relevant earnings announcement window periods, respectively, with day 0 referring to the earnings announcement date. The excess return is the difference between stock return and the return of the value-weighted CRSP index. ME is the market value of equity in millions, and MB is ME divided by the book value of equity, both measured at the end of the prior fiscal quarter. Momentum $(\operatorname{MOM}(-12,-1))$ is cumulative stock returns over the past year, skipping one month. Turnover is monthly trading volume divided by the number of shares outstanding. To address the issue of double counting of volume for Nasdaq stocks, we follow Anderson and Dyl (2005) and scale down the volume of Nasdaq stocks by 50% before 1997 and 38% after 1997 to make it roughly comparable to the volume on the NYSE. We consider six lottery proxies: Maxret is the maximum daily return, Skewexp is the expected idiosyncratic skewness from Boyer et al. (2010), Price is the month-end stock price, Jackpotp is the predicted jackpot probability from Conrad et al. (2014), and Ivol is the standard deviation of daily residual returns relative to the Fama and French (1993) three-factor model from Ang et al. (2006). The Z-score is a composite Z-score based on the previous five lottery proxies. Detailed variable definitions are described in the appendix. We exclude stocks with a price of less than $\$ 1$ per share at the end of the month prior to the earnings announcements. All continuous variables (except returns) are winsorized cross-sectionally at the 1st and 99th percentiles. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp which is from 1988 to 2014. Variables are reported in percentages except for ME, MB, Skewexp, Price, and Z-score.

	Mean	Std	Q1	Median	Q3
EXRET $(-1,+1)$	0.204	8.708	-3.384	-0.075	3.414
EXRET $(-5,-1)$	0.331	7.819	-3.128	-0.113	3.093
EXRET $(+1,+5)$	-0.170	8.973	-3.944	-0.409	3.171
ME	1496.112	5707.589	39.791	151.830	684.693
MB	2.862	4.492	1.026	1.672	2.923
MOM $(-12,-1)$	0.167	0.733	-0.178	0.067	0.346
Turnover	7.432	10.078	1.631	3.938	9.078
Maxret	6.869	5.865	3.150	5.128	8.499
Skewexp	0.750	0.598	0.332	0.653	1.092
Price	19.505	18.312	6.375	14.375	26.750
Jackpotp	1.818	3.071	0.534	1.052	1.989
Ivol	2.612	1.915	1.303	2.061	3.305
Z-score	-0.059	0.838	-0.764	-0.112	0.612

$\operatorname{EXRET}(+1,+5)$ are the buy-and-hold excess returns for the $(-1,+1),(-5,-1)$, and $(+1,+5)$ earnings announcements window periods, respectively, with day 0 referring to the earnings announcement date. The excess return is the difference between the stock return and the return of the value-weighted CRSP index. Firm size (ME) is calculated as price multiplied by the number of shares outstanding, and the market-to-book (MB) ratio is ME divided by book value of common stock, both measured at the end of the prior fiscal quarter. Momentum $(\operatorname{MOM}(-12,-1))$ is calculated as cumulative stock returns over the past year, skipping one month. Turnover is calculated as monthly trading volume divided by the number of shares outstanding. To address the issue of double-counting of volume for Nasdaq stocks, we follow Anderson and Dyl (2005) and scale down the volume of Nasdaq stocks by 50% before 1997 and 38% after 1997 to make it roughly comparable to the volume on the NYSE.

3. Pre-event and post-event returns

3.1. Portfolio sorts

In this section, we present our main results that excess returns for lottery-like stocks are significantly higher than non-lottery stocks before earnings announcements, with the opposite pattern holding after earnings announcements. Each quarter, firms with earnings announcements in that quarter are sorted into five portfolios based on each one of the six lottery proxies from the month prior to earnings announcements. If announcement dates are in the first ten trading days of a month, we lag one more month for the proxies. ${ }^{18}$ We calculate the equal-weighted excess returns of these lottery portfolios during the $(-5,-1)$ preevent period and the $(+1,+5)$ post-event period. ${ }^{19}$ The t statistics are calculated based on the heteroskedasticityconsistent standard errors of White (1980).

Panel A. 1 of Table 2 reports the results for the pre-event period, and Panel B. 1 reports the results for the post-event period. A striking pattern appears: the top quintile lottery portfolio significantly outperforms the bottom quintile before the events, whereas the opposite pattern appears after the events. Take Maxret as an example. During the ($-5,-1$) pre-event window, firms in the top Maxret quintile portfolio earn a return that is 34 basis points (bps) higher than the bottom quintile portfolio with the t-statistics equal to 3.46. In other words, the lottery anomaly is completely inverted during this period. In sharp contrast, during the $(+1,+5)$ post-event window, firms in the top Maxret quintile portfolio earn a return that is 76 basis points less than the bottom quintile portfolio with the t-statistics equal to -7.34 .

The other five proxies display similar patterns. In particular, during the pre-event window, the lottery spread is $0.41 \%, 0.54 \%, 0.57 \%, 0.41 \%, 0.52 \%$ for Skewexp, Prc, Jackpotp, Ivol, and Z-score, respectively, indicating that lotterylike stocks significantly outperform non-lottery stocks before earnings announcements. On the other hand, during the post-event window, the lottery spread is -0.70%, $-0.57 \%,-0.65 \%,-0.77 \%,-0.80 \%$ for Skewexp, Prc, Jackpotp, Ivol, and Z-score, respectively, suggesting that lottery-like stocks significantly underperform non-lottery stocks after earnings announcements. Many firms report earnings after the market closes, and thus for these firms, day 0 is not the effective announcement day but the trading day before the earnings announcement. ${ }^{20}$ As a result, to obtain a

[^12]Table 2
Pre-event and post-event portfolio returns.
Each quarter, firms with earnings announcements in that quarter are sorted into five portfolios based on each of six lottery proxies from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. We report the equal-weighted excess returns of these lottery portfolios as well as the differences between the top and bottom quintile portfolios during the ($-5,-1$) pre-event period in Panel A. 1 and the $(+1,+5)$ post-event period in Panel B.1, with day 0 referring to the earnings announcement date. Panels A. 2 and B. 2 present analogous average returns using pseudo-announcement dates. Pseudo-announcement dates are computed by subtracting a randomly selected number of trading days from the actual announcement date, where the random numbers are drawn from a uniform distribution spanning ten to 40 days. Panels A. 3 and B. 3 compare the differences between actual- and pseudo-announcement dates. Lottery proxies are defined as in Table 1 . The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp, which is from 1988 to 2014. Excess returns are reported in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980).

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: $(-5,-1)$ Pre-event excess return						
Panel A.1: Actual dates						
Q1	0.114	0.219	0.147	0.075	0.096	0.065
Q2	0.207	0.218	0.175	0.173	0.171	0.212
Q3	0.311	0.230	0.192	0.297	0.317	0.266
Q4	0.427	0.420	0.309	0.466	0.418	0.384
Q5	0.452	0.627	0.689	0.646	0.509	0.583
Q5-Q1	0.339	0.408	0.542	0.570	0.413	0.518
t-stat	(3.46)	(3.67)	(5.79)	(5.19)	(3.83)	(4.71)
Panel A.2: Pseudo dates						
Q1	0.057	0.013	0.025	0.012	0.047	0.049
Q2	0.042	0.034	-0.026	0.041	0.053	0.033
Q3	0.072	0.051	0.033	0.056	0.065	0.038
Q4	0.049	0.060	0.014	0.043	0.037	0.036
Q5	-0.008	0.043	0.167	0.082	0.010	0.042
Q5-Q1	-0.064	0.030	0.141	0.071	-0.036	-0.007
t-stat	(-0.91)	(0.31)	(1.71)	(0.80)	(-0.45)	(-0.08)
Panel A.3: Actual dates minus pseudo dates						
Q1	0.057	0.206	0.122	0.064	0.049	0.016
Q2	0.164	0.185	0.201	0.132	0.118	0.179
Q3	0.239	0.178	0.158	0.241	0.252	0.228
Q4	0.379	0.359	0.295	0.423	0.381	0.348
Q5	0.460	0.584	0.522	0.564	0.499	0.541
Q5-Q1	0.403	0.378	0.401	0.500	0.450	0.525
t-stat	(4.34)	(3.00)	(4.57)	(4.96)	(4.33)	(5.17)
Proxy $=$	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel B: $(+1,+5)$ Post-event excess return						
Panel B.1: Actual dates						
Q1	0.127	0.082	0.097	0.111	0.144	0.167
Q2	0.113	0.058	0.051	0.117	0.106	0.131
Q3	-0.047	-0.019	-0.045	-0.046	-0.013	-0.007
Q4	-0.203	-0.286	-0.274	-0.223	-0.253	-0.303
Q5	-0.633	-0.618	-0.470	-0.535	-0.626	-0.631
Q5-Q1	-0.760	-0.700	-0.567	-0.646	-0.769	-0.798
t-stat	(-7.34)	(-5.68)	(-5.96)	(-5.75)	(-6.87)	(-6.78)
Panel B.2: Pseudo dates						
Q1	0.080	0.011	0.023	0.031	0.055	0.063
Q2	0.052	-0.021	0.025	0.002	0.054	0.041
Q3	0.042	-0.027	0.010	0.046	0.061	0.046
Q4	0.027	-0.043	0.022	0.041	0.025	0.031
Q5	0.004	0.082	0.125	0.106	0.009	0.022
Q5-Q1	-0.076	0.071	0.103	0.075	-0.046	-0.041
t-stat	(-1.1)	(0.82)	(1.44)	(1)	(-0.64)	(-0.54)
Panel B.3: Actual dates minus pseudo dates						
Q1	0.047	0.070	0.074	0.080	0.088	0.104
Q2	0.062	0.080	0.025	0.115	0.052	0.090
Q3	-0.089	0.007	-0.055	-0.092	-0.074	-0.053
Q4	-0.230	-0.243	-0.296	-0.263	-0.278	-0.334
Q5	-0.637	-0.700	-0.595	-0.641	-0.635	-0.653
Q5-Q1	-0.684	-0.770	-0.669	-0.721	-0.723	-0.757
t-stat	(-6.8)	(-6.67)	(-7.8)	(-6.83)	(-6.82)	(-7.6)

clean measure of post-event performance, we focus on the $(+1,+5)$ post-event window. In the robustness checks section, we use an alternative definition of the earnings announcement date based on the day of highest relative trading volume following Engelberg et al. (2018) and show that our results remain quantitatively similar. ${ }^{21}$ Further, in untabulated tests, we find similar results if we use $(0,+5)$ as our post-event window or $(-5,0)$ as our pre-event window.

Further, to make sure that the patterns we discovered are specific to earnings announcements, rather than a general phenomenon for any date, we compare the announcement period returns to the non-announcement period using a placebo test based on "pseudo-event" dates. In particular, we repeat our portfolio analysis in Panel A. 1 and Panel B. 1 using randomly selected nonannouncement dates. Following So and Wang (2014), pseudo-announcement dates are chosen from a baseline period relative to the actual announcement dates by subtracting a randomly selected number of days that is drawn from a uniform distribution from ten to 40 days. We skip ten days from the actual announcement dates to avoid the scenario that the post-event period of the pseudoannouncement dates overlaps with the pre-event period of the actual-announcement dates. Panel A. 2 and Panel B. 2 report the results for these "pseudo-announcement" portfolios. Lottery-like stocks generally earn similar returns to non-lottery stocks. More importantly, Panel A. 3 and Panel B. 3 compare the "actual-announcement" and "pseudo-announcement" portfolios and report their differences. All the difference-in-differences are significant with the right sign during both pre-event and post-event periods, in both a statistical and economical sense.

Fig. 1 plots the difference in the cumulative buy-andhold excess returns between top and bottom quintile portfolios based on lottery proxies over the $(-5,+5) 11$ trading days centered around the earnings announcement dates. In particular, we calculate equal-weighted average buy-andhold excess returns accumulated starting from day -5 . We plot the difference in the average returns between the top and the bottom quintile lottery portfolios. For all six lottery proxies, the returns of these hedge portfolios start to increase five days prior to the event date and then decrease immediately after the event, with the biggest drop happening on the date right after the event. Further, a similar pattern holds if we use the $(-10,+10) 21$ trading days event window, as shown in Fig. 2. In sum, we provide information on when the overvaluation of lottery-like stocks occurs in the first place, whereas most prior studies focus on the subsequent reversals for lottery-like stocks.

We have documented an inverted-V-shaped cumulative return spread based on lottery proxies before and after earnings announcements in Fig. 1. One might think that the more intense speculative trading behavior may also hold for other anomaly characteristics, and thus there is

[^13]nothing special about our results for the inverted-V-shaped cumulative lottery spreads. Thus, for comparison, we also perform the same exercise for a set of other anomalyrelated characteristics. Probably the most well-known anomalies are value and momentum. Recently, profitability and investment have also attracted a lot of attention. In particular, Novy-Marx (2013), Fama and French (2015), Fama and French (2018), and Hou et al. (2015) show that new factor models with additional factors related to profitability and investment can account for a large set of asset pricing anomalies. Thus, we repeat our exercise for value, momentum, profitability, and investment and plot the cumulative anomaly return spreads around the earnings announcements in Fig. 3. First, the return spreads are more pronounced around the earnings announcements than in other periods, a finding consistent with La Porta et al. (1997) and Engelberg et al. (2018). More importantly, the cumulative return spreads based on book-to-market, profitability, and the opposite of investment over assets increase both before and after earnings announcements. For the momentum effect, the post-event return spread is positive in the first day after the announcement, and reversed to some degree starting from day 2 after the event. ${ }^{22}$ It is worth noting that the shape for the cumulative return spread in Fig. 3 is monotonically increasing for book-to-market, profitability, and the opposite of investment over assets, whereas for lottery characteristics, an inverted-V shape obtains. This contrast highlights the unique role of speculation ahead of earnings announcements for our lottery-related characteristics.

We would also like to link our previous result to the well-known earnings announcement premium literature. Indeed, many studies have documented an earnings announcement premium. For example, over the three days surrounding the earnings announcement, Frazzini and Lamont (2007) find that the average abnormal return is 0.21%. Ball and Kothari (1991) and Cohen et al. (2007) also find average three-day announcement abnormal returns of 0.24% and 0.11%, respectively, over different sample periods. Moreover, Barber et al. (2013) find that stocks tend to earn higher returns during the earnings announcement month across 20 countries. In addition, Ball and Kothari (1991) and Berkman et al. (2009) find average preannouncement abnormal returns of 0.17% and 0.34%, respectively, and a negligible average abnormal return of -0.01% post-announcement. Aboody et al. (2010) also find

[^14]

Fig. 2. Event-time lottery portfolio excess returns over 21 trading days. This figure plots the cumulative buy-and-hold hedge portfolio returns (in percentages) during the $(-10,+10)$ event window centered at the earnings announcement date. Each quarter, firms with earnings announcements are divided into five portfolios based on each of six lottery proxies from the month prior to the announcements. If the earnings announcement date is in the first ten trading days of a month, we lag one more month and use the lottery proxies from two months prior to the announcements. For each day during the ($-10,+10$) event window for each portfolio, we calculate the equal-weighted average buy-and-hold excess returns (in excess of the value-weighted return of the CRSP index) accumulated starting from day -10 . We plot the difference in the average returns between the top and bottom quintile lottery portfolios. Lottery proxies are defined as in Fig. 1. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp, which is from 1988 to 2014.
that the average pre-announcement market-adjusted return for their sample of stocks is about 0.30%, whereas the average post-announcement market-adjusted return is a negligible -0.1%. In sum, there is both a preannouncement premium and an earnings announcement premium. Although our results cannot shed light on the traditional earnings announcement premium since lottery stocks tend to have lower returns around the announcement dates (i.e., during the three-day $(-1,+1)$ event window around earnings announcements), the preference for lottery, especially before earnings announcements, could potentially help produce the pre-announcement premium. That is, this pre-announcement premium could be partially driven by the demand for lottery-like assets before earnings announcements. Before earnings announcements, each stock is more like a lottery asset, compared with the same stock during other ordinary times. Thus, because of investors' inherent desire for lottery, the average stock should also earn a higher return before announcements, partly contributing to the pre-announcement premium. The exact quantitative effect of this channel is hard to quantify. We can, however, perform a simple calculation to gauge the role of lottery-like stocks on the pre-
announcement premium. By eliminating the top 20% of the lottery stocks, the pre-announcement premium decreases from 0.302% to 0.232% over the $(-5,-1)$ event window. If we eliminate the top 40% of the lottery stocks, the pre-announcement premium is further reduced to 0.181%. Thus, we can see that lottery stocks indeed play a significant role in the pre-announcement premium.

Lastly, some concern may arise about our use of the actual earnings announcement date which could introduce an upward bias in returns since good and bad news announcements have different timing (Cohen et al., 2007; Barber et al., 2013). Indeed, the mechanism in Cohen et al. (2007) and Barber et al. (2013) can potentially cause an upward bias for the earnings announcement premium for average stocks. As argued in Cohen et al. (2007), firms with good news are more likely to announce early, whereas firms with bad news tend to be late announcers. Consequently, when an unexpected earnings announcement is made before its expected date, the return on the actual announcement date reflects both the good news and an announcement premium. On the other hand, firms with adverse news are more likely to announce late. However, this adverse news is likely to be anticipated by some

Fig. 3. Event-time portfolio excess returns over 11 trading days. This figure plots the cumulative buy-and-hold hedge portfolio returns (in percentages) during the $(-5,+5)$ event window centered at the earnings announcement date. Each quarter, firms with earnings announcements are divided into five portfolios based on each of four proxies from the month prior to the announcements: book-to-market equity (B/M), momentum (MOM), profitability (ROA), and the opposite of investment-to-assets (-IA). If the earnings announcement date is in the first ten trading days of a month, we lag one more month and use the proxies from two months prior to the announcements. For each day during the $(-5,+5)$ event window for each portfolio, we calculate the equal-weighted average buy-and-hold excess returns (in excess of the value-weighted return of the CRSP index) accumulated starting from day -5 , and plot the difference in the average returns between the top and bottom quintile portfolios. BM is the book value of equity divided by market value at the end of the last fiscal year. MOM is the cumulative stock return over the past year, skipping one month. ROA is quarterly earnings divided by total assets in the previous quarter. IA is the annual change in total assets divided by total assets in the previous year. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014.
investors when firms fail to announce on the expected announcement date. As a result, the stock prices before announcements tend to partially reflect the unfavorable news. Thus, combining early, on-time, and late announcers together on the actual announcement date is likely to overstate the announcement-period premia. However, the mechanism above is likely to bias against us finding the outperformance of lottery stocks over non-lottery stocks before earnings announcements for the following reasons. First, as shown in Table A1 in the Online Appendix, lottery-like stocks on average tend to have worse earnings news (i.e., negative earnings surprises) compared with non-lottery stocks, and thus lottery-like stocks tend to be later announcers rather than earlier announcers. For later announcers, the average more negative news is somewhat anticipated, thus reducing its pre-announcement returns. Thus, the mechanism in Cohen et al. (2007) tends to reduce the pre-announcement return spread between lottery-like stocks and non-lottery-like stocks, thereby weakening our results.

3.2. Fama-MacBeth regressions

The portfolio approach in the previous section is simple and intuitive, but it cannot explicitly control for other variables that may influence returns. To control for other firm characteristics, we perform a series of Fama and MacBeth (1973) cross-sectional regressions.

In all of the Fama-MacBeth regressions below, we regress event-window excess returns on a list of lagged traditional variables, such as firm size, book-to-market, past returns, and turnover. ${ }^{23}$ Independent variables (except for returns) are winsorized at their cross-sectional 1st and 99th percentiles, and t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). Panel A of Table 3 reports the regressions during the $(-5,-1)$ pre-event window. Consistent with our prediction, the lottery proxy is positive and significant for all six lottery proxies. Further, the regressions during the $(+1,+5)$ post-event window reported in Panel B show the negative and significant predictive power of all lottery measures as well. In particular, when the composite z-score increases by one standard deviation, the pre-event 5 -day return tends to increase by 0.15%, and the post-event

[^15]Table 3
Fama-MacBeth regressions.
Every quarter, we run two cross-sectional regressions of ($-5,-1$) pre-event excess returns (Panel A) and ($+1,+5$) post-event excess returns (Panel B) on lagged variables. If the announcement date is in the first ten trading days of a month, we lag one more month for the control variables. The time-series average of the regression coefficients is reported. Excess returns are defined relative to the value-weighted CRSP index and are in percentages. LogMB is the \log of market-to-book equity, LogME is the \log of market equity, $M O M(-1,0)$ is the return in the last month, $M O M(-12,-1)$ is the cumulative return over the past year with a one-month gap, and $\operatorname{MOM}(-36,-12)$ is the cumulative return over the past three years with a one-year gap. Past turnover is measured as monthly trading volume divided by number of shares outstanding. To address the issue of double counting of volume for Nasdaq stocks, we follow Anderson and Dyl (2005) and scale down the volume of Nasdaq stocks by 50% before 1997 and 38% after 1997 to make it roughly comparable to the volume on the NYSE. Lottery proxies are defined as in Table 1. The intercept of the regression is not reported. Independent variables (except returns) are winsorized at their cross-sectional 1st and 99th percentiles. The sample is the same as in Table 2 . The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980).

Proxy $=$	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: $(-5,-1)$ Pre-event regression						
Proxy	$\begin{aligned} & 1.279 \\ & (2.48) \end{aligned}$	$\begin{aligned} & 0.317 \\ & (4.50) \end{aligned}$	$\begin{aligned} & 0.199 \\ & (4.32) \end{aligned}$	$\begin{aligned} & 6.811 \\ & (3.09) \end{aligned}$	$\begin{aligned} & 4.078 \\ & (2.34) \end{aligned}$	$\begin{gathered} 0.180 \\ (3.53) \end{gathered}$
LogMB	$\begin{aligned} & -0.019 \\ & (-0.60) \end{aligned}$	$\begin{aligned} & 0.000 \\ & (0.01) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (-0.49) \end{aligned}$	$\begin{aligned} & -0.024 \\ & (-0.79) \end{aligned}$	$\begin{aligned} & -0.019 \\ & (-0.62) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (-0.93) \end{aligned}$
LogME	$\begin{aligned} & -0.097 \\ & (-6.80) \end{aligned}$	$\begin{aligned} & -0.042 \\ & (-2.55) \end{aligned}$	$\begin{aligned} & -0.046 \\ & (-3.50) \end{aligned}$	$\begin{aligned} & -0.079 \\ & (-5.06) \end{aligned}$	$\begin{aligned} & -0.091 \\ & (-6.65) \end{aligned}$	$\begin{aligned} & -0.052 \\ & (-3.74) \end{aligned}$
$\operatorname{MOM}(-1,0)$	$\begin{aligned} & -0.567 \\ & (-2.91) \end{aligned}$	$\begin{aligned} & -0.458 \\ & (-2.12) \end{aligned}$	$\begin{aligned} & -0.374 \\ & (-2.11) \end{aligned}$	$\begin{aligned} & -0.470 \\ & (-2.66) \end{aligned}$	$\begin{aligned} & -0.487 \\ & (-2.71) \end{aligned}$	$\begin{aligned} & -0.483 \\ & (-2.67) \end{aligned}$
$\operatorname{MOM}(-12,-1)$	$\begin{aligned} & 0.471 \\ & (6.78) \end{aligned}$	$\begin{aligned} & 0.245 \\ & (3.15) \end{aligned}$	$\begin{aligned} & 0.526 \\ & (8.11) \end{aligned}$	$\begin{gathered} 0.467 \\ (6.77) \end{gathered}$	$\begin{aligned} & 0.474 \\ & (6.90) \end{aligned}$	$\begin{gathered} 0.509 \\ (7.66) \end{gathered}$
$\operatorname{MOM}(-36,-12)$	$\begin{aligned} & -0.075 \\ & (-3.15) \end{aligned}$	$\begin{aligned} & -0.046 \\ & (-1.78) \end{aligned}$	$\begin{aligned} & -0.054 \\ & (-2.42) \end{aligned}$	$\begin{aligned} & -0.056 \\ & (-2.57) \end{aligned}$	$\begin{aligned} & -0.073 \\ & (-3.09) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (-2.88) \end{aligned}$
Turnover	$\begin{aligned} & -1.007 \\ & (-1.57) \end{aligned}$	$\begin{aligned} & 1.960 \\ & (3.55) \end{aligned}$	$\begin{aligned} & -0.801 \\ & (-1.28) \end{aligned}$	$\begin{aligned} & -0.854 \\ & (-1.32) \end{aligned}$	$\begin{aligned} & -1.059 \\ & (-1.64) \end{aligned}$	$\begin{aligned} & -1.238 \\ & (-2.05) \end{aligned}$
Panel B: $(+1,+5)$ Post-event regression						
Proxy	$\begin{aligned} & -2.971 \\ & (-5.01) \end{aligned}$	$\begin{aligned} & -0.603 \\ & (-7.74) \end{aligned}$	$\begin{aligned} & -0.350 \\ & (-7.78) \end{aligned}$	$\begin{aligned} & -11.870 \\ & (-4.05) \end{aligned}$	$\begin{aligned} & -9.717 \\ & (-4.9) \end{aligned}$	$\begin{aligned} & -0.339 \\ & (-6.63) \end{aligned}$
LogMB	$\begin{aligned} & -0.138 \\ & (-4.29) \end{aligned}$	$\begin{aligned} & -0.164 \\ & (-4.48) \end{aligned}$	$\begin{aligned} & -0.135 \\ & (-4.14) \end{aligned}$	$\begin{aligned} & -0.132 \\ & (-3.88) \end{aligned}$	$\begin{aligned} & -0.134 \\ & (-4.16) \end{aligned}$	$\begin{aligned} & -0.112 \\ & (-3.58) \end{aligned}$
LogME	$\begin{aligned} & 0.082 \\ & (5.86) \end{aligned}$	$\begin{aligned} & 0.015 \\ & (0.76) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (-0.67) \end{aligned}$	$\begin{aligned} & 0.084 \\ & (5.19) \end{aligned}$	$\begin{aligned} & 0.073 \\ & (5.54) \end{aligned}$	$\begin{aligned} & -0.005 \\ & (-0.34) \end{aligned}$
$\operatorname{MOM}(-1,0)$	$\begin{aligned} & -0.446 \\ & (-2.71) \end{aligned}$	$\begin{aligned} & -0.537 \\ & (-2.89) \end{aligned}$	$\begin{aligned} & -0.957 \\ & (-6.61) \end{aligned}$	$\begin{aligned} & -0.759 \\ & (-4.94) \end{aligned}$	$\begin{aligned} & -0.684 \\ & (-4.54) \end{aligned}$	$\begin{aligned} & -0.666 \\ & (-4.37) \end{aligned}$
$\operatorname{MOM}(-12,-1)$	$\begin{aligned} & -0.156 \\ & (-2.79) \end{aligned}$	$\begin{aligned} & -0.274 \\ & (-4.12) \end{aligned}$	$\begin{gathered} -0.238 \\ (-4.4) \end{gathered}$	$\begin{gathered} -0.184 \\ (-3.2) \end{gathered}$	$\begin{aligned} & -0.149 \\ & (-2.7) \end{aligned}$	$\begin{aligned} & -0.194 \\ & (-3.55) \end{aligned}$
MOM(-36,-12)	$\begin{aligned} & 0.012 \\ & (0.45) \end{aligned}$	$\begin{gathered} 0.019 \\ (0.73) \end{gathered}$	$\begin{aligned} & -0.039 \\ & (-1.56) \end{aligned}$	$\begin{aligned} & 0.009 \\ & (0.33) \end{aligned}$	$\begin{aligned} & 0.010 \\ & (0.41) \end{aligned}$	$\begin{aligned} & -0.007 \\ & (-0.29) \end{aligned}$
Turnover	$\begin{aligned} & -2.377 \\ & (-4.56) \end{aligned}$	$\begin{aligned} & -2.097 \\ & (-4.16) \end{aligned}$	$\begin{aligned} & -2.757 \\ & (-5.2) \end{aligned}$	$\begin{aligned} & -2.679 \\ & (-4.87) \end{aligned}$	$\begin{aligned} & -2.304 \\ & (-4.32) \end{aligned}$	$\begin{aligned} & -2.002 \\ & (-4.02) \end{aligned}$

5-day return tends to decrease by an even larger amount of 0.28%.

In sum, the evidence based on both the portfoliosorting approach and Fama-MacBeth regressions is consistent with the notion that investors are especially attracted to lottery-like stocks before earnings announcements, which generates positive lottery spreads that are in the opposite direction from the traditional lottery anomalies.

4. Inspecting the mechanisms

In this section, we provide further evidence of investors' gambling behavior before earnings announcements. In particular, we will present results controlling for past 12month stock returns and various proxies for investor attention, as well as results from the retail order imbalance and the trading behavior on the options market. In addition, we will also perform robustness checks based on variation in religious beliefs in gambling propensity and based on 38 international markets.

4.1. Evidence from attention proxies

In a related paper, Trueman et al. (2003) document an economically large abnormal return over the 5-day window prior to Internet stocks' earnings announcements from 1998 to 2000. More important, Aboody et al. (2010) document that stocks with the strongest prior 12 month returns experience a significant average marketadjusted return of 1.58% during the five trading days before their earnings announcements and a significant average marketadjusted return of -1.86% in the five trading days after the announcements. In addition, they show that during the preannouncement period, past winners experience a significant positive abnormal retail order imbalance. In the postannouncement period, the positive abnormal retail order imbalances disappear. They argue that this pattern is due to the attention-grabbing feature of past extreme winners, especially before earnings announcements.

Since the return patterns for lottery stocks and past extreme winners are similar around earnings announcements, it is important to show that our results are not driven by the extreme winners. In Table 4, we perform

Table 4
Pre-event and post-event portfolio returns, controlling for past 12-month returns.
This table reports our portfolio excess returns controlling for past 12-month returns in Aboody et al. (2010). Panel A reports the past 12-month returnadjusted portfolio spreads. Each quarter, firms with earnings announcements in that quarter are first sorted into ten deciles according to their past 12month returns; within each decile, stocks are then sorted into five groups according to each of the six lottery proxies from the month prior to the announcement date; and finally we collapse across the past 12 -month return groups and obtain five past 12 -month return-adjusted lottery portfolios. Panel B excludes the top decile past 12-month return stocks and sorts firms with earnings announcements each quarter into five portfolios based on each of six lottery proxies from the month prior to the announcement date. Lottery proxies are defined as in Table 1 . The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp which is from 1988 to 2014. Excess returns are reported in percentages. The t-statistics are calculated based on the heteroskedasticityconsistent standard errors of White (1980). We only report the top and bottom quintile lottery portfolios and their difference to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: Conditional double sort						
Panel A.1: $(-5,-1)$ Pre-event excess return						
Q1	0.189	0.213	0.096	0.114	0.117	0.094
Q5	0.441	0.630	0.756	0.713	0.506	0.627
Q5-Q1	0.253	0.417	0.661	0.599	0.389	0.533
t-stat	(3.53)	(4.65)	(8.39)	(7.17)	(5.27)	(6.46)
Panel A.2: $(+1,+5)$ Post-event excess return						
Q1	0.106	0.096	0.094	0.092	0.114	0.146
Q5	-0.469	-0.550	-0.403	-0.458	-0.445	-0.472
Q5-Q1	-0.575	-0.647	-0.497	-0.550	-0.559	-0.618
t-stat	(-7.82)	(-6.49)	(-6.26)	(-6.24)	(-7.14)	(-7.25)
Panel B: Excluding top decile winner stocks						
Panel B.1: $(-5,-1)$ Pre-event excess return						
Q1	0.102	0.129	0.087	0.054	0.084	0.054
Q5	0.371	0.573	0.649	0.590	0.424	0.513
Q5-Q1	0.269	0.444	0.562	0.536	0.339	0.459
t-stat	(2.85)	(3.77)	(5.83)	(4.82)	(3.27)	(4.25)
Panel B.2: $(+1,+5)$ Post-event excess return						
Q1	0.127	0.170	0.163	0.127	0.141	0.170
Q5	-0.473	-0.563	-0.396	-0.475	-0.456	-0.502
Q5-Q1	-0.600	-0.732	-0.559	-0.601	-0.597	-0.671
t-stat	(-6.18)	(-5.72)	(-5.76)	(-5.37)	(-5.75)	(-5.99)

two tests to address this issue. First, Panel A performs a double-sorting exercise to control for the effect of previous returns. In particular, each quarter, firms with earnings announcements in that quarter are first sorted into ten deciles according to their past 12 -month return; within each decile, stocks are then sorted into five groups according to each one of the six lottery proxies from the month prior to the announcement date; and finally we collapse across the past 12 -month return groups and obtain five past 12 -month return-adjusted lottery portfolios. We find that after controlling for past returns, the average return spread between lottery and non-lottery stocks (using the composite lottery index z-score) before earnings announcements is still 53.3 basis points, a magnitude similar to our original unconditional spread of 52 basis points. ${ }^{24}$ Second, in Panel B, we repeat our univariate lottery portfolio test within the subsample that excludes the top 10\% of firms with the highest past 12 -month returns. Our results remain largely the same. The average return spread between lottery and non-lottery stocks before earnings announcements is still 45.9 basis points. In addition, controlling for past returns, the post-event results also remain similar. In particular, the average return spreads between lottery and non-lottery stocks (using the composite lottery

[^16]index z-score) after earnings announcements is still -62 basis points, a magnitude slightly smaller than the original unconditional spread of -80 basis points.

Although the results above show that our results are not completely driven by extreme winners or by the correlation of lottery stocks with past winners, we still cannot rule out the possibility that the outperformance of lottery stocks before earnings announcements is due to the attention-grabbing feature of lottery stocks, the same feature as the past winners, as proposed in Aboody et al. (2010). More specifically, Aboody et al. (2010) argue that stocks with sharp past run-ups tend to attract investors attention and thus lead to higher returns for past winners before earnings announcements. Thus, if lottery stocks simply resemble stocks with sharp run-ups, they would also attract more attention than non-lottery stocks. This heightened investor attention to lottery stocks could lead to greater buying pressure and thus higher returns for lottery stocks relative to non-lottery stocks before earnings announcements. Thus, this pure attention channel could potentially produce our return pattern, and it is exactly the same channel as in Aboody et al. (2010), who use retail order imbalance as a proxy for investor attention and find that stocks with sharp run-ups tend to attract investors attention. Consequently, it is important to differentiate the intrinsic preference channel (i.e., individuals intrinsic preference for lottery stocks, especially before earnings

Table 5
Pre-event and post-event portfolio returns conditional on media coverage.
This table compares our event portfolio pattern conditional on whether the stock has media coverage during the ($-5,-1$) pre-event window. Each quarter, firms with earnings announcements in that quarter are sorted into five portfolios based on each of six lottery proxies from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. We report equal-weighted excess returns of these lottery portfolios of firms without media coverage, as well as the differences between the top and bottom quintile portfolios during the $(-5,-1)$ pre-event period in Panel A. 1 and the $(+1,+5)$ post-event period in Panel B.1, with day 0 referring to the earnings announcement date. Panels A. 2 and B. 2 present analogous average returns of firms with media coverage. Lottery proxies are defined as in Table 1. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 2000 to 2014. Excess returns are reported in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). We only report the top and bottom quintile lottery portfolios and their difference to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: $(-5,-1)$ Pre-event excess return						
Panel A.1: No media coverage						
Q1	0.044	0.095	0.109	0.117	0.017	0.038
Q5	0.363	0.417	0.602	0.625	0.457	0.530
Q5-Q1	0.319	0.322	0.493	0.509	0.440	0.491
t-stat	(1.64)	(1.97)	(3.02)	(2.44)	(2.16)	(2.40)
Panel A.2: With media coverage						
Q1	0.172	0.219	0.131	0.110	0.094	0.071
Q5	1.097	1.245	1.317	1.345	1.234	1.371
Q5-Q1	0.925	1.026	1.186	1.235	1.140	1.300
t-stat	(2.81)	(3.52)	(3.96)	(3.21)	(3.02)	(3.36)
Panel B: $(+1,+5)$ Post-event excess return						
Panel B.1: No media coverage						
Q1	0.318	0.234	0.167	0.249	0.351	0.332
Q5	-1.207	-0.836	-0.975	-1.225	-1.231	-1.343
Q5-Q1	-1.525	-1.070	-1.141	-1.474	-1.583	-1.675
t-stat	(-7.05)	(-5.37)	(-5.49)	(-5.85)	(-6.53)	(-6.91)
Panel B.2: With media coverage						
Q1	0.153	0.182	0.156	0.118	0.250	0.286
Q5	-1.120	-0.947	-0.998	-1.034	-1.174	-1.267
Q5-Q1	-1.273	-1.129	-1.154	-1.153	-1.425	-1.553
t-stat	(-5.75)	(-6)	(-5.63)	(-5.01)	(-6.11)	(-6.03)

announcements) from the pure attention-grabbing channel (that is, lottery stocks, just like past winners, tend to attract more attention before earnings announcements). Before we perform formal tests, we would like to point out that we believe that investor attention must play some role for the pre-announcement lottery premium. After all, without attention to stocks, no one would buy lottery stocks even if they had an intrinsic desire for these stocks. For example, Barber and Odean (2008) argue that "preferences determine choices after attention has determined the choice set."

Although attention should play some role, our evidence below shows that our results are not completely driven by the pure attention-grabbing channel. To validate this statement, we use direct proxies for investor attention, other than retail order imbalance as used in Aboody et al. (2010). This is because retail order imbalance for a stock could be a result of the attention-grabbing feature of that stock (as in Aboody et al., 2010) or could be the effect of individuals' intrinsic preference for that stock, such as desire for lottery. Thus, in tests below we use more direct measures of attention and try to distinguish these two channels. We find that for firms with a similar level of attention before earnings announcements, lottery stocks still tend to earn higher returns than non-lottery stocks. More important, even after controlling for many proxies for attention, we find that lottery stocks still earn higher returns relative to non-lottery stocks before earnings announcements.

More specifically, we repeat our portfolio analysis and report the return pattern within the subsample of firms with and without media coverage in Table 5. Even among firms without media coverage prior to earnings announcements, using the composite lottery index z-score, the return spread between lottery stocks and non-lottery stocks before earnings announcements is still about 49 bps (t statistic $=2.40$). Among firms with media coverage, this spread is even higher at 130 bps. ${ }^{25}$ This stronger return spread among firms with media coverage is consistent with the argument by Barber and Odean (2008) that "preferences determine choices after attention has determined the choice set." Earnings announcement events attract more investor attention, and because of an additional inherent desire for lottery stocks, the increased demand for lottery stocks should be greater than that for non-lottery stocks, leading to higher pre-event returns for lottery stocks. Lastly, Panel B shows that the postannouncement lottery discounts are also significant among both firms with media coverage and firms without media coverage.

To provide further evidence that our results are not completely driven by the pure attention-grabbing channel,

[^17]Table 6 conducts a double-sorting exercise using three additional proxies for attention that have been used in previous studies including the magnitude of recent standardized unexpected earnings, or SUE (|SUE|), the population density of a firm's headquarters (PD), and the social connectedness of a firm's headquarters (SCIH), as well as a composite measure for attention (Attn) based on the average of the individual z-scores of media, |SUE|, PD, and SICH. Each quarter, firms with earnings announcements in that quarter are sequentially sorted into 255 -by- 5 portfolios based first on each one of the four attention proxies and then on each one of the six lottery proxies. To save space, except for the double sort by the composite attention measure and the composite lottery measure, we only report the results of the five attention-adjusted lottery portfolios from collapsing across the five attention groups. Panel A reports the excess returns of the 25 portfolios from the double sort by the composite attention score and the lottery z-score, the difference between the bottom and top quintile lottery portfolios within each attention quintile, as well as the conditional returns average across all five attention quintiles. The results show that within each attention quintile, lottery stocks still earn significantly higher (lower) returns than non-lottery stocks before (after) earnings announcements. Panel B reports the returns of the attention-adjusted lottery portfolios from our double sort when using different attention proxies. The results show that for each of these four measures, after controlling for attention in a double-sorting exercise, the effect is still there. More specifically, after controlling for each of these 4 measures, the average outperformance of lottery stocks over non-lottery stocks before earnings announcements is still significant. For example, the outperformance is $54 \mathrm{bps}, 52 \mathrm{bps}, 53 \mathrm{bps}$, and 51 bps after controlling for each of these four measures, respectively. The average value is 53 bps in the 5-day pre-event window. That is, among firms with a similar level of pre-event attention, the pre-event lottery effect is similar to that (i.e., 52 bps) without controlling for the effect of attention. ${ }^{26}$

In addition, in Table 7, we add the composite attention score to the Fama-MacBeth regressions in Table 3. The results show that after controlling for investor attention and other variables, the coefficients on lottery proxies are still positive (negative) and significant during the pre-event (post-event) window for all six lottery proxies. In particular, when the composite z-score (attention score, momentum) increases by one standard deviation, the pre-event 5day return tends to increase by 0.13% ($0.06 \%, 0.28 \%$), and the post-event 5 -day return tends to decrease by 0.31% ($0.04 \%, 0.10 \%$). Thus, although the attention proxy is statistically more significant than the lottery proxy, the lottery proxy is economically more significant than the attention proxy. On the other hand, the lottery proxy has weaker (stronger) power in predicting the pre-event (post-event) return than the momentum variable.

[^18]In sum, although the attention-grabbing feature of lottery stocks could play some role in the pre-event run-up for lottery stock prices, our evidence shows that investors' inherent desire for lottery stocks should also play a significant role.

4.2. Evidence from retail order imbalance

Lottery preferences, like other behavioral biases, tend to be more prominent among individual investors (see, e.g., Kumar, 2009). In addition, earnings announcement events tend to grab retail investors attention. Thus, the attentiondriven demand for lotteries could increase ahead of earnings announcements. Consequently, we expect to see more trading initiated by retail investors before earnings announcements, especially among lottery-like stocks. Panel A of Table 8 compares the change in retail order imbalance between lottery-like and non-lottery stocks prior to the announcements. As shown in Panel A.1, the increase in retail order imbalance is generally significantly larger among lottery-like stocks than among non-lottery stocks. However, this pattern is subdued or even reversed after the announcements for some lottery proxies, a pattern similar to top decile winners, as in Aboody et al. (2010). Indeed, none of the retail order imbalance increase during the post-event window is significant. Thus, the return reversal effect for lottery stocks after the earnings announcement is probably partially driven by the subdued abnormal retail order imbalance. ${ }^{27}$

Since Aboody et al. (2010) also find an increased retail order imbalance for past winners before earnings announcements, it is important to investigate the possibility that our results arise from the correlation between lottery stocks and past returns. In Panel B of Table 8, we control directly for the past 12 -month return in our test of retail order imbalance by either doing a conditional double sort or excluding the top 10% of past 12 -month winner stocks. More specifically, in Panel B.1, each quarter, firms with earnings announcements in that quarter are first sorted into ten deciles according to their past 12 -month return; within each decile, stocks are then sorted into five groups according to each one of the six lottery proxies from the month prior to the announcement date; and finally we collapse across the past 12 -month return groups and obtain five past 12 -month return-adjusted lottery portfolios. The result shows that the retail order imbalance pattern remains the same in a conditional double-sorting exercise by controlling for past 12-month returns. Lastly, Panel B. 2 shows that when we exclude the top 10% of firms with the highest past 12 -month returns, the abnormal retail order imbalance pattern remains quantitatively similar. In sum, we still find that the abnormal retail order imbalance increases more for lottery stocks than for non-lottery stocks before the earnings announcements after controlling for past returns. Thus, our results are distinct from the results in Aboody et al. (2010).

[^19]Table 6
Pre-event and post-event portfolio returns, controlling for attention.
Each quarter, firms with earnings announcements in that quarter are sequentially sorted into 255 -by- 5 portfolios based first on each of the four attention proxies and then on each of six lottery proxies. We further collapse across the attention groups and obtain five attention-adjusted lottery portfolios. The sorting variables are from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. We consider four attention proxies: $|S U E|$ is the absolute value of standardized unexpected earnings (SUE) in the previous quarter, where SUE is the difference in split-adjusted quarterly earnings per share between the current fiscal quarter and the same fiscal quarter in the previous year, divided by the standard deviation of this change over the previous eight quarters. Population density (PD) is measured as the county-level population in thousands per square mile of land area. The social connectedness of people living in the county of a firm's headquarters (SCIH) is the sum of the Facebook Social Connectedness Index (SCI) of a firm's headquarters with all other counties in the United States. The composite attention score (Attn) is a composite attention measure calculated as the average of the individual z-scores of the previous three attention measures and the media measure in Table 5. Panel A reports equal-weighted excess returns of the 25 portfolios sequentially sorted by the composite attention score and then by the composite lottery score, as well as the difference between the bottom and top quintile lottery portfolios within each attention quintile during the ($-5,-1$) pre-event period (Panel A.1) and the ($+1,+5$) post-event period (Panel A.2), with day 0 referring to the earnings announcement date. Ave is the average returns across the five attention quintiles. Panel B reports the equal-weighted excess returns of the bottom and top quintile lottery portfolios as well as their differences for the five attention-adjusted lottery portfolios during the $(-5,-1)$ pre-event period in Panel B. 1 and the $(+1,+5)$ post-event period in Panel B.2. We only report the top and bottom quintile lottery portfolios and their difference in Panel B to save space. Lottery proxies are defined as in Table 1 . The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for PD, which is from 1976 to 2014, and Skewexp, which is from 1988 to 2014. Excess returns are reported in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980).

Panel A: Double-sorted portfolios by Attn and Z-score						
Attn port. $=$	P1	P2	P3	P4	P5	Ave
Panel A.1: $(-5,-1)$ Pre-event excess return						
Q1	0.008	0.041	0.101	0.117	0.077	0.069
Q2	0.027	0.136	0.231	0.302	0.300	0.199
Q3	0.160	0.247	0.253	0.356	0.386	0.280
Q4	0.221	0.329	0.363	0.405	0.599	0.384
Q5	0.586	0.591	0.559	0.546	0.631	0.583
Q5-Q1	0.579	0.550	0.458	0.429	0.554	0.514
t-stat	(4.53)	(4.7)	(3.7)	(3.08)	(3.68)	(4.72)
Panel A.2: $(+1,+5)$ Post-event excess return						
Q1	0.180	0.185	0.114	0.173	0.165	0.163
Q2	0.165	0.108	0.137	0.164	0.112	0.137
Q3	0.139	-0.012	-0.078	-0.020	-0.067	-0.007
Q4	-0.116	-0.358	-0.354	-0.342	-0.288	-0.292
Q5	-0.622	-0.649	-0.547	-0.601	-0.790	-0.642
Q5-Q1	-0.801	-0.834	-0.662	-0.774	-0.955	-0.805
t-stat	(-6.23)	(-6.09)	(-4.74)	(-5.55)	(-6.91)	(-6.89)
Proxy $=$	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel B: Conditional premium						
Panel B.1: (-5,-1) Pre-event excess return						
Panel B.1.1: \mid SUE\|						
Q1	0.129	0.223	0.142	0.080	0.096	0.077
Q5	0.458	0.636	0.701	0.644	0.505	0.616
Q5-Q1	0.329	0.413	0.560	0.564	0.409	0.539
t-stat	(3.5)	(3.74)	(6.04)	(5.23)	(3.97)	(5.01)
Panel B.1.2: PD						
Q1	0.110	0.217	0.130	0.052	0.084	0.070
Q5	0.468	0.638	0.680	0.666	0.522	0.595
Q5-Q1	0.358	0.421	0.550	0.615	0.438	0.524
t-stat	(3.38)	(3.78)	(5.49)	(5.32)	(3.87)	(4.48)
Panel B.1.3: SCIH						
Q1	0.110	0.218	0.135	0.069	0.086	0.066
Q5	0.446	0.648	0.700	0.648	0.506	0.593
Q5-Q1	0.336	0.430	0.564	0.579	0.420	0.526
t-stat	(3.47)	(3.88)	(6.07)	(5.37)	(3.96)	(4.85)
Panel B.1.4: Attn						
Q1	0.120	0.208	0.144	0.069	0.093	0.069
Q5	0.451	0.631	0.682	0.645	0.511	0.583
Q5-Q1	0.332	0.424	0.538	0.576	0.418	0.514
t-stat	(3.42)	(3.78)	(5.8)	(5.23)	(3.92)	(4.72)

Panel B.2: $(+1,+5)$ Post-event excess return

		Panel B.2.1: \mid SUE \mid				0.117
Q1	0.120	0.080	0.111	0.131		
Q5	-0.546	-0.589	-0.436	-0.541		
Q5-Q1	-0.665	-0.670	-0.546	-0.672	-0.569	
t-stat	(-6.88)	(-5.86)	-0.631	-0.724		
(-6.51)	(-5.75)	(-6.58)				

Table 6 (continued)

Panel B.2.2: PD						
Q1	0.108	0.066	0.063	0.094	0.111	0.147
Q5	-0.617	-0.567	-0.427	-0.518	-0.591	-0.586
Q5-Q1	-0.726	-0.633	-0.490	-0.612	-0.702	-0.733
t-stat	(-6.69)	(-5.25)	(-4.88)	(-5.16)	(-5.93)	(-6.05)
Panel B.2.3: SCIH						
Q1	0.115	0.065	0.080	0.111	0.135	0.154
Q5	-0.615	-0.587	-0.440	-0.532	-0.608	-0.598
Q5-Q1	-0.730	-0.652	-0.519	-0.643	-0.743	-0.753
t-stat	(-7.39)	(-5.43)	(-5.46)	(-5.78)	(-6.83)	(-6.6)
Panel B.2.4: Attn						
Q1	0.123	0.072	0.089	0.114	0.141	0.163
Q5	-0.623	-0.605	-0.463	-0.529	-0.622	-0.642
Q5-Q1	-0.746	-0.677	-0.552	-0.643	-0.762	-0.805
t-stat	(-7.26)	(-5.42)	(-5.73)	(-5.68)	(-6.85)	(-6.89)

Table 7
Fama-MacBeth regressions, controlling for attention.
Every quarter, we run two cross-sectional regressions of ($-5,-1$) pre-event excess returns (Panel A) and ($+1,+5$) post-event excess returns (Panel B) on lagged variables. If the announcement date is in the first ten trading days of a month, we lag one more month for the control variables. The timeseries average of the regression coefficients is reported. Excess returns are defined relative to the value-weighted CRSP index and are in percentages. The composite attention score (Attn) is defined as in Table 6, and other variables are defined as in Table 3. The intercept of the regression is not reported. Independent variables (except returns) are winsorized at their cross-sectional 1st and 99th percentiles. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp, which is from 1988 to 2014. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980).

Proxy =	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: (-5,-1) Pre-event regression						
Attn	$\begin{gathered} 0.100 \\ (4.77) \end{gathered}$	$\begin{aligned} & 0.102 \\ & (3.72) \end{aligned}$	$\begin{aligned} & 0.091 \\ & (4.59) \end{aligned}$	$\begin{aligned} & 0.095 \\ & (4.44) \end{aligned}$	$\begin{aligned} & 0.099 \\ & (4.72) \end{aligned}$	$\begin{aligned} & 0.091 \\ & (4.59) \end{aligned}$
Proxy	$\begin{gathered} 1.366 \\ (2.15) \end{gathered}$	$\begin{aligned} & 0.294 \\ & (4.57) \end{aligned}$	$\begin{aligned} & 0.203 \\ & (4.3) \end{aligned}$	$\begin{aligned} & 6.421 \\ & (3.23) \end{aligned}$	$\begin{aligned} & 4.494 \\ & (2.05) \end{aligned}$	$\begin{aligned} & 0.154 \\ & (2.98) \end{aligned}$
LogMB	$\begin{aligned} & -0.040 \\ & (-1.33) \end{aligned}$	$\begin{gathered} -0.014 \\ (-0.4) \end{gathered}$	$\begin{aligned} & -0.038 \\ & (-1.28) \end{aligned}$	$\begin{aligned} & -0.035 \\ & (-1.17) \end{aligned}$	$\begin{aligned} & -0.040 \\ & (-1.32) \end{aligned}$	$\begin{aligned} & -0.050 \\ & (-1.77) \end{aligned}$
LogME	$\begin{aligned} & -0.105 \\ & (-7.51) \end{aligned}$	$\begin{aligned} & -0.049 \\ & (-2.96) \end{aligned}$	$\begin{aligned} & -0.047 \\ & (-3.65) \end{aligned}$	$\begin{aligned} & -0.086 \\ & (-5.74) \end{aligned}$	$\begin{aligned} & -0.102 \\ & (-7.66) \end{aligned}$	$\begin{aligned} & -0.064 \\ & (-4.71) \end{aligned}$
$\operatorname{MOM}(-1,0)$	$\begin{aligned} & -0.489 \\ & (-2.63) \end{aligned}$	$\begin{aligned} & -0.376 \\ & (-1.85) \end{aligned}$	$\begin{aligned} & -0.351 \\ & (-2.08) \end{aligned}$	$\begin{aligned} & -0.448 \\ & (-2.62) \end{aligned}$	$\begin{aligned} & -0.446 \\ & (-2.61) \end{aligned}$	$\begin{aligned} & -0.447 \\ & (-2.58) \end{aligned}$
$\operatorname{MOM}(-12,-1)$	$\begin{aligned} & 0.453 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 0.226 \\ & (2.82) \end{aligned}$	$\begin{aligned} & 0.518 \\ & (7.79) \end{aligned}$	$\begin{gathered} 0.459 \\ (6.59) \end{gathered}$	$\begin{aligned} & 0.455 \\ & (6.51) \end{aligned}$	$\begin{aligned} & 0.496 \\ & (7.32) \end{aligned}$
$\operatorname{MOM}(-36,-12)$	$\begin{aligned} & -0.065 \\ & (-2.78) \end{aligned}$	$\begin{aligned} & -0.036 \\ & (-1.46) \end{aligned}$	$\begin{aligned} & -0.041 \\ & (-1.88) \end{aligned}$	$\begin{aligned} & -0.048 \\ & (-2.31) \end{aligned}$	$\begin{aligned} & -0.063 \\ & (-2.73) \end{aligned}$	$\begin{aligned} & -0.052 \\ & (-2.44) \end{aligned}$
Turnover	$\begin{aligned} & -1.167 \\ & (-1.96) \end{aligned}$	$\begin{gathered} 1.711 \\ (3.34) \end{gathered}$	$\begin{aligned} & -1.099 \\ & (-1.91) \end{aligned}$	$\begin{aligned} & -1.110 \\ & (-1.82) \end{aligned}$	$\begin{aligned} & -1.219 \\ & (-2.03) \end{aligned}$	$\begin{aligned} & -1.496 \\ & (-2.66) \end{aligned}$
Panel B: $(+1,+5)$ Post-event regression						
Attn	$\begin{aligned} & -0.074 \\ & (-3.91) \end{aligned}$	$\begin{aligned} & -0.098 \\ & (-4.22) \end{aligned}$	$\begin{aligned} & -0.060 \\ & (-3.25) \end{aligned}$	$\begin{aligned} & -0.077 \\ & (-3.65) \end{aligned}$	$\begin{aligned} & -0.072 \\ & (-3.83) \end{aligned}$	$\begin{aligned} & -0.057 \\ & (-3.07) \end{aligned}$
Proxy	$\begin{aligned} & -3.241 \\ & (-5.78) \end{aligned}$	$\begin{aligned} & -0.628 \\ & (-7.44) \end{aligned}$	$\begin{gathered} -0.377 \\ (-8.1) \end{gathered}$	$\begin{gathered} -12.136 \\ (-4.35) \end{gathered}$	$\begin{gathered} -11.104 \\ (-5.74) \end{gathered}$	$\begin{gathered} -0.377 \\ (-7) \end{gathered}$
LogMB	$\begin{aligned} & -0.142 \\ & (-4.42) \end{aligned}$	$\begin{aligned} & -0.175 \\ & (-4.58) \end{aligned}$	$\begin{aligned} & -0.143 \\ & (-4.36) \end{aligned}$	$\begin{aligned} & -0.136 \\ & (-4.03) \end{aligned}$	$\begin{aligned} & -0.136 \\ & (-4.24) \end{aligned}$	$\begin{aligned} & -0.113 \\ & (-3.65) \end{aligned}$
LogME	$\begin{gathered} 0.081 \\ (5.9) \end{gathered}$	$\begin{aligned} & 0.016 \\ & (0.8) \end{aligned}$	$\begin{gathered} -0.015 \\ (-1.1) \end{gathered}$	$\begin{aligned} & 0.084 \\ & (5.24) \end{aligned}$	$\begin{aligned} & 0.069 \\ & (5.32) \end{aligned}$	$\begin{aligned} & -0.015 \\ & (-1.02) \end{aligned}$
$\operatorname{MOM}(-1,0)$	$\begin{aligned} & -0.382 \\ & (-2.39) \end{aligned}$	$\begin{aligned} & -0.508 \\ & (-2.76) \end{aligned}$	$\begin{aligned} & -0.928 \\ & (-6.61) \end{aligned}$	$\begin{aligned} & -0.708 \\ & (-4.7) \end{aligned}$	$\begin{aligned} & -0.621 \\ & (-4.25) \end{aligned}$	$\begin{aligned} & -0.622 \\ & (-4.25) \end{aligned}$
$\operatorname{MOM}(-12,-1)$	$\begin{aligned} & -0.123 \\ & (-2.15) \end{aligned}$	$\begin{aligned} & -0.256 \\ & (-3.79) \end{aligned}$	$\begin{aligned} & -0.207 \\ & (-3.67) \end{aligned}$	$\begin{aligned} & -0.174 \\ & (-3.02) \end{aligned}$	$\begin{aligned} & -0.120 \\ & (-2.13) \end{aligned}$	$\begin{aligned} & -0.169 \\ & (-3.02) \end{aligned}$
$\operatorname{MOM}(-36,-12)$	$\begin{aligned} & 0.007 \\ & (0.28) \end{aligned}$	$\begin{aligned} & 0.024 \\ & (0.95) \end{aligned}$	$\begin{aligned} & -0.044 \\ & (-1.93) \end{aligned}$	$\begin{aligned} & -0.002 \\ & (-0.09) \end{aligned}$	$\begin{aligned} & 0.005 \\ & (0.21) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (-0.53) \end{aligned}$
Turnover	$\begin{aligned} & -2.460 \\ & (-4.58) \end{aligned}$	$\begin{aligned} & -2.214 \\ & (-4.45) \end{aligned}$	$\begin{aligned} & -2.930 \\ & (-5.4) \end{aligned}$	$\begin{aligned} & -2.802 \\ & (-4.78) \end{aligned}$	$\begin{aligned} & -2.346 \\ & (-4.28) \end{aligned}$	$\begin{aligned} & -2.121 \\ & (-4.13) \end{aligned}$

Table 8
Evidence from retail order imbalance.
This table reports the difference in the change in the retail order imbalance between top and bottom quintile lottery portfolios. We first compute the retail order imbalance during each window period using the difference between buy-initiated and sell-initiated small-trade volume divided by the total of buy-initiated and sell-initiated small-trade volume: RIMB = (BUYVOL - SELLVOL)/(BUYVOL + SELLVOL), where BUYVOL and SELLVOL are the sum of daily buy-initiated and sell-initiated small-trade volume of this stock during each window period. We measure the change in the retail order imbalance during the event window by taking the difference between RIMB during the $(-5,-1)$ pre-event or $(+1,+5)$ post-event window and the average RIMB of the six fiveday windows starting 30 days after the earnings announcements and ending 59 days after. Panel A reports unconditional lottery portfolios. Each quarter, firms with earnings announcements in that quarter are sorted into five portfolios based on each of six lottery proxies. Panel B controls for past 12-month returns by a conditional double sort (Panel B.1) or excluding the top 10% of past 12 -month winner stocks (Panel B.2). In Panel B.1, each quarter, firms with earnings announcements in that quarter are first sorted into ten deciles according to their past 12 -month returns; within each decile, stocks are then sorted into five groups according to each of the six lottery proxies from the month prior to the announcement date; and finally we collapse across the past 12 -month return groups and obtain five past 12-month return-adjusted lottery portfolios. Panel B. 2 excludes the top decile past 12 -month return stocks and sorts firms with earnings announcements each quarter into five portfolios based on the lag value of each of six lottery proxies. Panel C controls for each of the four attention proxies (|SUE| in Panel C.1, population density (PD) in Panel C.2, social connectedness (SCIH) in Panel C.3, and a composite attention score (Attn) in Panel C.4) by conditional double sort. Each quarter, firms with earnings announcements in that quarter are first sorted into five quintiles according to each of the attention proxies; within each quintile, stocks are then sorted into five groups according to each of six lottery proxies; and finally we collapse across the attention groups and obtain five attention-adjusted lottery portfolios. Panel D reports the difference in the change in the retail order imbalance between top and bottom quintile lottery portfolios in each attention quintile from the conditional double sort by the composite attention score and the lottery z-score. Ave is the average across the five attention quintiles. Panel E reports the time-series average of the regression coefficients from the Fama-MacBeth predictive regressions. We add two independent variables: $(-5,-1)$ RIMB and its interaction with our lottery proxies to the Fama-MacBeth regressions in Table 3. Lottery proxies are defined as in Table 1, and attention proxies are defined the same as in Table 6. We only include NYSE and Amex common stocks and require the price to be at least $\$ 1$ at the end of the month prior to the earnings announcements. In Panel E, independent variables (except returns) are winsorized at their cross-sectional 1st and 99th percentiles. The sample period is from 1983 to 2000 except for Skewexp, which is from 1988 to 2000. The t-statistics are calculated based on the heteroskedasticity-adjusted standard errors of Newey and West (1987) in Panels A-D and the heteroskedasticity-consistent standard errors of White (1980) in Panel E. We only report the difference between the top and bottom quintile lottery portfolios in Panels A-D, and the regression coefficients of RIMB, lottery proxies, and the interaction terms in Panel E, to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: Unconditional lottery portfolios						
Panel A.1: $(-5,-1)$ Pre-event window						
Q5-Q1	1.324	1.292	2.992	2.600	3.036	2.913
t-stat	(2.97)	(1.65)	(4.82)	(3.84)	(6.09)	(4.82)
Panel A.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.297	-0.009	0.926	0.314	0.786	0.554
t-stat	(-0.79)	(-0.02)	(1.51)	(0.52)	(1.51)	(0.97)
Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score

Panel B.1: Conditional double sort Panel B.1.1: $(-5,-1)$ Pre-event window						
Q5-Q1	0.903	0.502	1.520	1.721	2.061	1.737
t-stat	(2.3)	(0.71)	(2.66)	(2.91)	(5.02)	(3.31)
Panel B.1.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.542	-1.077	-0.170	-0.799	-0.015	-0.477
t-stat	(-1.47)	(-2.1)	(-0.32)	(-1.48)	(-0.04)	(-1.01)

Panel B.2: Excluding top 10% winner stocks Panel B.2.1: $(-5,-1)$ Pre-event window						
Q5-Q1	1.266	1.189	2.590	2.322	2.948	2.682
t-stat	(2.71)	(1.41)	(3.91)	(3.25)	(5.47)	(4.14)
Panel B.2.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.283	-0.158	0.677	0.268	0.798	0.640
t-stat	(-0.7)	(-0.26)	(1.04)	(0.42)	(1.4)	(1.08)

Panel C: Controlling for attention

| Panel C.1: Controlling for \|SUE|
 Panel C.1.1: $(-5,-1)$ Pre-event window | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q5-Q1 | 1.302 | 1.494 | 2.918 | 2.817 | 3.147 | 2.966 |
| t-stat | (2.98) | (2.01) | (4.63) | (4.33) | (6.51) | (4.98) |
| Panel C.1.2: $(+1,+5)$ Post-event window | | | | | | |
| Q5-Q1 | -0.371 | -0.002 | 0.811 | 0.408 | 0.772 | 0.468 |
| t-stat | (-0.97) | (0) | (1.3) | (0.69) | (1.46) | (0.82) |
| Panel C.2: Controlling for PD | | | | | | |
| Panel C.2.1: $(-5,-1)$ Pre-event window | | | | | | |
| Q5-Q1 | 1.132 | 1.524 | 3.217 | 2.691 | 2.879 | 2.728 |
| t-stat | (2.51) | (2.07) | (5.42) | (4.18) | (6.06) | (4.7) |

Table 8 (continued)

Proxy $=$	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel C.2.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.440	-0.269	0.825	0.415	0.679	0.462
t-stat	(-1.18)	(-0.44)	(1.31)	(0.67)	(1.3)	(0.83)
Panel C.3: Controlling for SCIH						
Panel C.3.1: $(-5,-1)$ Pre-event window						
Q5-Q1	1.337	1.445	2.981	2.694	2.909	2.805
t-stat	(3.04)	(1.98)	(4.68)	(4.26)	(5.76)	(4.67)
Panel C.3.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.292	-0.009	1.023	0.305	0.789	0.442
t-stat	(-0.77)	(-0.01)	(1.62)	(0.48)	(1.51)	(0.76)
Panel C.4: Controlling for Attn						
Panel C.4.1: $(-5,-1)$ Pre-event window						
Q5-Q1	1.384	1.391	2.880	2.775	3.143	2.906
t-stat	(3.27)	(1.81)	(4.65)	(4.24)	(6.36)	(4.79)
Panel C.4.2: $(+1,+5)$ Post-event window						
Q5-Q1	-0.214	0.114	0.950	0.290	0.912	0.674
t-stat	(-0.58)	(0.2)	(1.53)	(0.47)	(1.85)	(1.18)
Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel D: Double-sorted portfolios by Attn and Z-score						
Attn port.=	P1	P2	P3	P4	P5	Ave
Panel D.1: $(-5,-1)$ Pre-event window						
Q5-Q1	2.699	2.754	2.541	3.457	3.081	2.906
t-stat	(2.95)	(3.46)	(3.16)	(4.2)	(3.9)	(4.79)
Panel D.2: $(+1,+5)$ Post-event window						
Q5-Q1	0.165	0.236	0.752	1.204	1.014	0.674
t-stat	(0.18)	(0.33)	(1.01)	(1.44)	(1.1)	(1.18)
Panel E: Fama-MacBeth regressions						
Panel E.1: $(-5,-1)$ Pre-event regression						
RIMB	0.022	0.013	0.121	0.021	0.010	0.056
	(13.67)	(6.01)	(24.76)	(12.94)	(5.37)	(25.15)
Proxy	0.042	0.010	0.005	0.430	0.176	0.005
	(3.94)	(7.2)	(6.21)	(6.45)	(4.41)	(5.9)
Proxy x RIMB	0.421	0.047	0.028	2.217	1.629	0.033
	(14.9)	(15.00)	(19.95)	(15.39)	(16.95)	(17.31)
Panel E.2: $(+1,+5)$ Post-event regression						
RIMB	0.024	0.014	0.117	0.022	0.012	0.055
	(12.78)	(6.64)	(24.28)	(12.56)	(6.15)	(24.89)
Proxy	-0.014	-0.002	-0.001	-0.020	-0.034	-0.001
	(-1.34)	(-1.48)	(-1.4)	(-0.28)	(-0.97)	(-2.12)
Proxy x RIMB	0.379	0.046	0.027	2.107	1.519	0.030
	(14.56)	(15.85)	(19.61)	(14.54)	(16.89)	(17.05)

As argued earlier, the increase in the retail order imbalance for lottery stocks could be due to both the attentiongrabbing feature of lottery stocks and investors intrinsic desire for lottery stocks, especially before earnings announcements. So far, we have mixed these two channels in the tests of the increase in the retail order imbalance for lottery stocks before earnings announcements. In Panels C and D of Table 8, we use a conditional double-sorting procedure to isolate these two channels from each other. In particular, each quarter, firms with earnings announcements in that quarter are first sorted into five quintiles according to each attention proxy; within each quintile, stocks are then sorted into five groups according to each one of the six lottery proxies from the month prior to the announcement date; and finally to save space, except for the double sort by the composite attention proxy and the composite lottery proxy, we only report the results of the five attention-adjusted lottery portfolios from collaps-
ing across the five attention groups. ${ }^{28}$ The results show that after controlling for various proxies for attention, lottery stocks still experience a higher increase in retail order imbalance relative to non-lottery stocks before earnings announcements. That is, even among firms with a similar level of investor attention, investors' desire for lottery stocks is stronger than for non-lottery stocks. Thus, our evidence provides further support for the intrinsic preference channel for our results, although the attention channel must still play some role, as argued earlier.

The more pronounced increases in the retail order imbalance for lottery-like stocks are likely to lead to price increases for those stocks. When there is an imbalance

[^20]between buy and sell orders, market markers may absorb the order imbalance by serving as the trade counterparty. However, market makers may demand greater compensation for incurring inventory risks because of the greater anticipated volatility associated with the information event (see, e.g., Nagel, 2012; So and Wang, 2014). In addition, as discussed in the introduction, arbitrage forces should also be more limited ahead of earnings announcements because of greater uncertainty. Taken together, this implies a greater price run-up for lottery-like stocks ahead of earnings announcements, consistent with our main findings in Table 2.

In light of the above discussion, we also study how the retail order imbalance affects returns ahead of earnings announcements. In Panel E of Table 8, we use the regression approach and include the $(-5,-1)$ RIMB and its interaction with lottery proxies along with all other controls in the Fama-MacBeth regressions framework used in the previous section (i.e., Table 3). All the interaction terms between the retail order imbalance and lottery proxies appear to be positive and significant, indicating that an increase in retail investor interest before the announcements tends to amplify the positive lottery spread before the announcements. Lastly, in untabulated tests, we use a short sample of detailed individual transaction data from Barber and Odean (2000), Barber and Odean (2001), Barber and Odean (2002) $)^{29}$ and also find some preliminary evidence that individual investors are more likely to buy lottery-like stocks before earnings announcements.

4.3. Evidence from the option markets

In addition to the direct evidence from investors' trading behavior on the stock market, we also examine whether the gambling preference exists in the options market and whether it is intensified ahead of earnings announcements. OTM calls are a natural candidate for gambling because they are cheap and have highly skewed payoffs. ${ }^{30}$ Therefore, if investors have a stronger demand for lottery stocks before earnings announcements, they would be more likely to buy short-term OTM calls prior to the event. We plot the dynamics of the adjusted trading volume of short-term OTM calls during the $(-5,+5)$ event window in Fig. 4. As expected, trading volume starts to increase from five days prior to the event, peaks at the event date, and then sharply drops immediately after the event. This pre-event increase pattern echoes that of the retail order imbalance of the lottery-like stocks in the stock market. We also study the pattern of implied volatilities of the OTM call options around the announcement dates. Because of the stronger demand for lottery-like assets before earnings announcements, the implied volatility of these call options spikes before the announcement and then declines after the earnings announcement, as shown in Fig. 4.

[^21]Lastly, we also examine the order flow pattern for OTM call options around earnings announcements. On average, prior to earnings announcements, the retail order imbalance increases for average OTM call options, a pattern also seen in lottery stocks. This imbalance is subdued or even reversed after the announcements, a pattern similar to that in the stock market. ${ }^{31}$ One might expect weaker results in the options market since that market has more institutional investors relative to the stock market. However, Doran et al. (2013) show that OTM options, which have a strong resemblance to lotteries, have more individual investors than institutional investors [about 8:1 according to Table 6 in Doran et al. (2013)], and thus we also see a similar order flow pattern in the options market as we do in the stock market.

In sum, the results from investors' trading behavior on the stock market as well as the options market provide further support for our hypothesis on investors' amplified demand for lottery ahead of earnings announcements.

4.4. Evidence from religious beliefs in gambling propensity

In this subsection, we examine the role of religious beliefs in gambling propensity. Kumar et al. (2011) find that religion-induced gambling preference exhibits geographic variation, and that the lottery-stock premium is larger when a firm is located in a region with high concentrations of Catholics relative to Protestants. Compared with the more tolerant gambling views of Catholic churches, many Protestant churches maintain a strong moral opposition to gambling and consider it as a sinful activity.

Following the logic in Kumar et al. (2011), if the speculative trading is due to lottery-like preferences, we expect the effect to be stronger for firms in high CPRATIO regions as well. To test this conjecture, we add the log of CPRATIO and its interaction with our lottery proxies to the FamaMacBeth regressions in Table 3. Table 9 reports the results. Consistent with our prediction, the interaction terms are all positive in the pre-event regressions, and the sign flips for four out of six proxies in the post-event regressions. That is, the inverted-V-shaped pattern in the cumulative return spreads is more pronounced among firms in the regions with a stronger gambling propensity.

4.5. Evidence from international markets

In this subsection, we examine the international data to see whether the results we documented are an international phenomenon. We use aggregate turnover as a proxy for gambling preference in each country. ${ }^{32}$ The countrylevel aggregate turnover is the average annual turnover across all the years we have data for the country. In Panel A of Table 10, we rank countries by aggregate turnover into three groups and then examine the portfolio pattern

[^22]

Fig. 4. Event-time aggregate OTM call options: trading volume, retail order imbalance, and implied volatility. This figure plots the daily adjusted volume, implied volatility, and retail order imbalance of short-term OTM call options during the $(-5,+5)$ event window centered at the earnings announcement date averaged across all stocks. We only use short-term options expiring in the next month. The adjusted volume for OTM calls is defined as the difference between the daily OTM volume and its three-month moving average, normalized by its three-month moving average. The daily retail order imbalance is computed by taking the difference between the daily buy-initiated and sell-initiated retail trading volume divided by the sum of the daily buy-initiated and sell-initiated retail trading volume. We further normalize this retail order imbalance by subtracting the benchmark retail order imbalance, which is the average daily retail order imbalance starting from 30 days after the earnings announcements and ending in 59 days after. We average the daily adjusted volume, implied volatility, and retail order imbalance across all stocks for each event day. The sample period is from 1996 to 2014 for trading volume and implied volatility, and from 2008 to 2014 for retail order imbalance.
within each group. Indeed, the result shows that among countries with higher turnover/stronger gambling preference, the outperformance of lottery stocks over non-lottery stocks before earnings announcements is more pronounced than that among countries with lower turnover. For example, among the top tercile group of countries with the highest turnover, the outperformance over the 5-day preevent window is 61 bps , whereas among the bottom tercile
group of countries with the lowest turnover, the outperformance of lottery stocks over non-lottery stocks is only 4 bps.

In Panel B, we conduct two additional sets of FamaMacBeth regressions. In the first test, we rank countries by aggregate turnover into three groups, and then within each group, we run Fama-MacBeth regressions as in Table 3 and also control for country fixed effects.

Table 9
Fama-MacBeth regressions with religious beliefs interactions.
Each quarter, we run two sets of cross-sectional regressions of ($-5,-1$) pre-event excess returns (Panel A) and ($+1,+5$) post-event excess returns (Panel B) on lagged variables. If the announcement date is in the first ten trading days of a month, we lag one more month for the control variables. The time-series average of the regression coefficients is reported. Excess returns are defined relative to the value-weighted CRSP index and are in percentages. LogCPRATIO is the log of the Catholic-Protestant ratio from Kumar et al. (2011). Other control variables include logmb, logme, returns over past one month, 12 months, and 36 months, and turnover. Lottery proxies are defined as in Table 1. Independent variables (except returns) are winsorized at their cross-sectional 1st and 99th percentiles. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2010 except for Skewexp, which is from 1988 to 2010. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). We only report the regression coefficients of LogCPRATIO, lottery proxies, and the interaction terms to save space.

Proxy =	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: $(-5,-1)$ Pre-event regression						
LogCPRATIO	$\begin{aligned} & -0.001 \\ & (-0.07) \end{aligned}$	$\begin{gathered} 0.010 \\ (0.50) \end{gathered}$	$\begin{aligned} & 0.104 \\ & (2.06) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.11) \end{aligned}$	$\begin{aligned} & -0.020 \\ & (-0.84) \end{aligned}$	$\begin{gathered} 0.034 \\ (2.69) \end{gathered}$
Proxy	$\begin{gathered} 1.967 \\ (3.49) \end{gathered}$	$\begin{gathered} 0.400 \\ (5.00) \end{gathered}$	$\begin{aligned} & 0.245 \\ & (4.79) \end{aligned}$	$\begin{aligned} & 8.329 \\ & (3.56) \end{aligned}$	$\begin{aligned} & 6.434 \\ & (3.54) \end{aligned}$	$\begin{aligned} & 0.247 \\ & (4.74) \end{aligned}$
Proxy x LogCPRATIO	$\begin{gathered} 0.722 \\ (2.16) \end{gathered}$	$\begin{gathered} 0.052 \\ (1.95) \end{gathered}$	$\begin{gathered} 0.026 \\ (1.61) \end{gathered}$	$\begin{gathered} 1.785 \\ (1.32) \end{gathered}$	$\begin{gathered} 2.709 \\ (2.41) \end{gathered}$	$\begin{gathered} 0.032 \\ (2.08) \end{gathered}$
Panel B: $(+1,+5)$ Post-event regression						
LogCPRATIO	$\begin{aligned} & -0.041 \\ & (-2.34) \end{aligned}$	$\begin{aligned} & 0.011 \\ & (0.41) \end{aligned}$	$\begin{aligned} & -0.081 \\ & (-1.82) \end{aligned}$	$\begin{aligned} & -0.012 \\ & (-0.73) \end{aligned}$	$\begin{aligned} & -0.027 \\ & (-1.3) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (-1.21) \end{aligned}$
Proxy	$\begin{aligned} & -2.703 \\ & (-3.94) \end{aligned}$	$\begin{aligned} & -0.614 \\ & (-6.81) \end{aligned}$	$\begin{aligned} & -0.331 \\ & (-6.76) \end{aligned}$	$\begin{aligned} & -9.677 \\ & (-3.1) \end{aligned}$	$\begin{aligned} & -9.090 \\ & (-4.16) \end{aligned}$	$\begin{aligned} & -0.313 \\ & (-5.8) \end{aligned}$
Proxy x LogCPRATIO	$\begin{gathered} 0.271 \\ (0.91) \end{gathered}$	$\begin{aligned} & -0.051 \\ & (-1.45) \end{aligned}$	$\begin{aligned} & -0.024 \\ & (-1.69) \end{aligned}$	$\begin{aligned} & -0.755 \\ & (-0.68) \end{aligned}$	$\begin{aligned} & 0.118 \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.014 \\ & (-0.98) \end{aligned}$

In particular, we regress firm-level pre- or post-event window returns on the lottery composite index z-score, logMB, logME, past returns over different horizons, firm-level turnover, and country dummies. In the second test, instead of running regressions within each aggregate turnover group, we run the regression in the full sample but add aggregate turnover as well as its interaction with z score to the regression. In general, we find that the preannouncement lottery premium is stronger among countries with a stronger preference for lottery in these FamaMacBeth regressions. For example, after controlling for many other variables, we still find that the lottery variable is more significant among the group of countries with higher turnover. Moreover, the coefficient for the interaction term between the lottery proxy and turnover is also statistically significant.

4.6. Additional robustness checks

In this section, we report the results of several additional robustness tests.

First, we conduct a subsample analysis based on institutional ownership. Compared with individual investors, institutional investors should be less subject to behavioral biases such as lottery preference. Therefore, we perform a double-sorting portfolio analysis. Stocks are first divided into two groups based on the institutional ownership (IO) at the end of the previous quarter, and then within each group, stocks are further divided into five portfolios based on each of the six lottery proxies from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. IO is defined as the percentage of shares held by institutional investors as reported in the Thomson Financial 13F database. Table 11 reports the lot-
tery spread within these subsamples as well as their differences during the pre-event and post-event periods. Consistent with our conjecture, during the pre-event period, the lottery spreads are generally greater within the bottom 50\% IO subsample, and the difference between the top and bottom IO group is significant for four of the six proxies. A similar pattern also appears during the post-event period, where the underperformance of lottery-like stocks is more severe among the low IO subsample, with the difference-in-differences significant for all six proxies.

Our second robustness test examines the realized return skewness of lottery-like and non-lottery stocks during the event window. Lottery-like stocks tend to have higher skewness than non-lottery stocks on average. More importantly, investors might believe that the differences in skewness between lottery-like and non-lottery stocks are particularly large during the earnings announcement periods as compared with other periods. Thus, investors have a stronger preference for lottery-like stocks before earnings announcements. To test this prediction, we calculate the realized skewness between top and bottom quintile lottery portfolios during both the actual-event period and the pseudo-event period, and compare the difference-indifferences. Panel A of Table 12 reports the results. As expected, the $(-1,+1)$ event-window returns of lottery-like stocks have higher skewness than non-lottery stocks on average. In addition, lottery-like stocks have much higher realized skewness during the event window than during other times, whereas the skewness for non-lottery stocks is similar across the event window and the non-event window. More important, the difference-in-differences of skewness are higher during event periods than in other periods for all six proxies. Further, apart from return skewness, we also examine the realized skewness of earnings surprises on announcement dates. Panel B of Table 12 reports the results. For all six lottery proxies, the realized

Table 10

International evidence.
Panel A reports the pre-event and post-event portfolio returns for international countries. We first divide all 38 countries by their aggregate turnover (Turnover ${ }^{A G}$) into three groups, and then each quarter within each group, firms with earnings announcements are divided into five portfolios based on a composite z-score of three lottery proxies (Maxret, Prc, and Ivol) from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. Maxret is the maximum daily return, Prc is the negative log of one plus the stock price (i.e., $\operatorname{Prc}=-\log (1+$ Price $)$), and Ivol is idiosyncratic volatility from Ang et al. (2009). Turnover ${ }^{A G}$ is the average annual turnover across all the years we have data for the country. We report equal-weighted excess returns of the top and bottom z-score quintile portfolios and their differences during the $(-5,-1)$ pre-event period in Panel A. 1 and the $(+1,+5)$ post-event period in Panel A.2, with day 0 referring to the earnings announcement date. We skip the middle Turnover ${ }^{A G}$ group to save space. Panel B reports results for two sets of Fama and MacBeth regressions for international countries. Test (I) first divides all 38 countries by their aggregate turnover (Turnover ${ }^{A G}$) into three groups, and then within each group, we run Fama-MacBeth regressions on country dummies and a set of control variables including logmb, logme, returns over past one month, 12 months, and 36 months, and turnover. Test (II) runs Fama-MacBeth regressions in the full sample and adds two additional independent variables: Turnover ${ }^{A G}$ and an interaction term between Turnover ${ }^{A G}$ and the lottery z-score. The intercept, control variables, and country dummies of the regression are not reported to save space. We only report the Low group, High group, and their difference (H-L) to save space. The sample period is 1999 to 2014. Excess returns are in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). See footnote 16 for a list of the 38 countries included.

Panel A: Portfolio excess returns			
Group $=$	Low	High	
	Panel A.1: $(-5,-1)$ Pre-event window		
Q1	0.051	0.096	
Q5	0.093	0.709	
Q5-Q1	0.042	0.613	
t-stat	(0.24)	(3.39)	
	Panel A.2: $(+1,+5)$ Post-event window		
Q1	0.151	0.212	
Q5	-0.653	-1.005	
Q5-Q1	-0.803	-1.217	
t-stat	(-4.66)	(-7.18)	

Panel B: Fama-MacBeth regressions

skewness of earnings surprises is also much higher among lottery-like stocks than non-lottery stocks.

Our third robustness test includes the earnings announcement date in the post-event window. Since many firms report earnings after the market closes, our tests so far have excluded day 0 from the post-event window. In untabulated analysis, we confirm that the pre-event effect remains similar if we choose $(-5,0)$ as our preevent window, and the post-event reversal effect also remains similar if we choose $(0,+5)$ as our post-event window. These results are omitted from the paper and available upon request. Moreover, we also adopt an alternative definition of earnings announcement dates by following Engelberg et al. (2018). For each firm, we first compute its daily trading volume scaled by market trading volume for each day before, the day of, and the day after the reported earnings announcement date from Compustat quarterly database. The highest relative trading volume
day among these three days is treated as the earnings announcement day. Table A3 in the Online Appendix reports the portfolio results based on this alternative definition. The results are largely the same as before.

Our fourth robustness test investigates the lottery return spread around earnings announcements among the subsample of firms with ex post good news, ex post neutral news, and ex post bad news. We use both standardized unexpected earnings (SUE) and cumulative abnormal returns (CAR) around earning announcements as measures of news. ${ }^{33}$ In particular, Table A6 in the Online Appendix shows that conditional on ex post good news or neutral news, our results still hold. That is, the lottery stocks do earn significantly higher returns than non-lottery stocks before earnings announcements. However, conditional on

[^23]Table 11
Pre-event and post-event portfolio returns among bottom and top 50\% IO subsample
Each quarter, firms with earnings announcements are first divided into two groups based on the institutional ownership (IO). Within each IO group, firms are further sorted into five portfolios based on each of six lottery proxies from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. We report the equal-weighted excess returns of these lottery portfolios, as well as the differences between the top and bottom quintile portfolios during the $(-5,-1)$ pre-event period in Panel A. 1 and the $(+1,+5)$ post-event period in Panel B.1, with day 0 referring to the earnings announcement date. IO is calculated as the percentage of firms' shares held by institutional investors at the end of the prior quarter. Lottery proxies are defined as in Table 1. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1980 to 2014 except for Skewexp, which is from 1988 to 2014. Excess returns are reported in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). We only report the bottom and top quintile lottery portfolios and their differences to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: $(-5,-1)$ Pre-event excess return						
Panel A.1: Bottom 50\% IO subsample						
Q1	0.117	0.176	0.141	0.169	0.145	0.118
Q5	0.520	0.727	0.752	0.727	0.575	0.624
Q5-Q1	0.403	0.551	0.611	0.558	0.430	0.506
t-stat	(3.45)	(4.07)	(4.62)	(4.23)	(3.28)	(3.72)
Panel A.2: Top 50\% IO subsample						
Q1	0.025	0.257	0.158	0.068	0.050	0.042
Q5	0.337	0.301	0.227	0.291	0.342	0.316
Q5-Q1	0.312	0.044	0.069	0.223	0.291	0.274
t-stat	(2.66)	(0.35)	(0.67)	(1.74)	(2.24)	(1.98)
Panel A.3: Top minus bottom 50% IO subsample						
Q5-Q1	-0.091	-0.508	-0.542	-0.335	-0.138	-0.232
t-stat	(-1.04)	(-4.07)	(-4.93)	(-3.13)	(-1.45)	(-2.22)

Panel B: $(+1,+5)$ Post-event excess return

Panel B.1: Bottom 50\% IO subsample						
Q1	0.070	-0.111	-0.103	-0.043	0.061	0.093
Q5	-0.896	-0.822	-0.687	-0.760	-0.846	-0.824
Q5-Q1	-0.967	-0.711	-0.584	-0.717	-0.908	-0.917
t-stat	(-6.87)	(-5.07)	(-4.69)	(-4.88)	(-6.05)	(-6.03)
Panel B.2: Top 50\% IO subsample						
Q1	0.146	0.108	0.123	0.135	0.176	0.204
Q5	-0.214	-0.066	-0.079	-0.037	-0.220	-0.208
Q5-Q1	-0.359	-0.174	-0.202	-0.172	-0.395	-0.412
t-stat	(-3.13)	(-1.31)	(-1.75)	(-1.31)	(-3.01)	(-2.94)
Panel B.3: Top minus bottom 50\% IO subsample						
Q5-Q1	0.607	0.537	0.382	0.545	0.512	0.505
t-stat	(5.91)	(4.36)	(3.31)	(4.34)	(4.72)	(4.63)

ex post bad news, the lottery stocks do not earn significantly higher returns than non-lottery stocks before earnings announcements.

Earlier studies (e.g., Givoly and Palmon, 1982, Chambers and Penman, 1984, Bagnoli et al., 2002, Johnson and So, 2018) find that firms with unfavorable news tend to be late announcers, while firms with favorable news tend to be earlier announcers. Thus, conditional on bad news, there is a higher probability of the firm being a later announcer, and thus some investors anticipate the bad news. In addition, conditional on bad news, lottery stocks tend to have even worse news than non-lottery stocks (as shown in Table A7 in the Online Appendix). Thus, if this news is anticipated by some investors, the lottery premium before earnings announcements will be reduced. On the other hand, for the firms with ex post good news, if part of the earnings news is leaked or anticipated by some investors, then we should observe that the lottery return spreads ahead of earnings news should be stronger among firms with ex post good news. This pattern is consistent with our untabulated results, which show that among earlier and on-time announcers, the lottery stocks do earn significantly higher returns before earnings announcements, whereas among
late announcers, the pre-announcement lottery premium is insignificant.

As our last robustness test, Table A8 in the Online Appendix examines the time-series pattern of the documented inverted-V shape of lottery spreads. Specifically, we run a time-series regression of the return spreads between the top and bottom lottery quintile portfolios during the event window on contemporaneous aggregate mutual fund flows (MFFLOW) and aggregate hedge fund flows (HFFLOW) at the quarterly frequency. ${ }^{34}$ Panel A reports the result during the $(-5,-1)$ pre-event window, and Panel B reports the result during the $(+1,+5)$ post-event window. Consistent with the finding in Akbas et al. (2015) that mutual fund flow is dumb money, MFFLOW is positively and significantly related to the price run-up of lottery stocks. The effect of HFFLOW is the opposite but insignificant,

[^24]Table 12
Realized skewness of event returns and earnings surprises.
Each quarter, firms with earnings announcements in that quarter are sorted into five portfolios based on each of six lottery proxies from the month prior to the announcement date. If the announcement date is in the first ten trading days of a month, we lag one more month for the proxies. We report the skewness (Panel A.1) of firm-quarter panel excess returns during the ($-1,+1$) three-day event-window centered at the announcement date for the top and bottom quintile portfolios, as well as their differences. We also present analogous skewness (Panel A.2) using pseudo-announcement dates. Pseudoannouncement dates are computed by subtracting a randomly selected number of trading days from the actual announcement date, where the random numbers are drawn from a uniform distribution spanning ten to 40 days. Panel A. 3 compares the differences between actual- and pseudo-announcement dates. Panel B reports the skewness of firm-quarter panel earnings surprise at the announcement date for the top and bottom quintile portfolios, as well as their differences. The earnings surprise is calculated by taking the difference between actual quarterly earnings per share and the most recent median consensus earnings per share (EPS) forecast of analysts for that quarter normalized by assets per share at previous quarter end. Lottery proxies are defined as in Table 1. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 in Panel A, from 1985 to 2014 in Panel B, and from 1988 to 2014 for Skewexp in both panels. We only report the bottom and top quintile lottery portfolios and their differences to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: Skewness of ($-1,+1$) excess return						
Panel A.1: Actual dates						
Q1	1.468	0.278	0.079	0.203	0.645	0.118
Q5	3.601	4.156	4.011	3.981	3.732	3.890
Q5-Q1	2.134	3.878	3.932	3.778	3.087	3.772
Panel A.2: Pseudo dates						
Q1	1.263	0.177	-0.445	0.832	0.747	0.681
Q5	1.583	-0.680	2.267	1.694	1.492	0.973
Q5-Q1	0.320	-0.857	2.712	0.862	0.745	0.292
Panel A.3: Actual dates minus pseudo dates						
Q1	0.205	0.101	0.524	-0.628	-0.102	-0.563
Q5	2.018	4.836	1.744	2.287	2.240	2.917
Q5-Q1	1.813	4.735	1.220	2.916	2.343	3.480
Panel B: Skewness of earnings surprise						
Q1	-3.900	-2.651	-1.419	-4.363	-4.234	-3.874
Q5	-1.342	-1.146	-1.107	-1.159	-1.213	-1.083
Q5-Q1	2.559	1.506	0.312	3.204	3.021	2.791

probably reflecting the severe limits of arbitrage before earnings announcements. The effect of MFFLOW on preevent returns is also consistent with Edelen et al. (2016), who find that institutional money is generally on the wrong side of return anomalies. For post-event returns, when MFFLOW is high, the post-event return spreads between lottery and non-lottery stocks are smaller, consistent with the view that MFFLOW impedes the correction of mispricing. However, the results for HFFLOW are the opposite, consistent with the view that HFFLOW accelerates the correction of mispricing. These findings are consistent with Akbas et al. (2015) that mutual fund flow is dumb, whereas hedge fund flow is smart.

5. Refined lottery strategy

Given our previous findings on the different return patterns of lottery-like stocks before and after earnings announcements, in this section we propose a refined lottery strategy and compare it with the standard lottery strategy.

Since lottery-like stocks underperform non-lottery stocks on average, the standard lottery strategy typically holds a hedge portfolio that buys non-lottery stocks and sells lottery-like stocks. Given our findings in the previous sections that lottery-like stocks actually outperform non-lottery stocks before earnings announcements, we therefore propose a refined lottery strategy of buying lottery-like stocks and selling non-lottery stocks during the $(-10,-1)$ pre-event window and then reverting to the standard lottery strategy afterward. To ensure that
the strategy is implementable, we only use the pre-event dates in the same month of the actual announcement date. In other words, instead of longing non-lottery stocks and shorting lottery-like stocks during the entire month t after forming lottery portfolios at the end of month $t-1$, as in the standard lottery strategy, for stocks with scheduled earnings announcements in month t, we sell the stock if it belongs to the bottom lottery quintile, or buy the stock if it is in the top lottery quintile, during the $(-10,-1)$ preevent window. Further, if the earnings announcement date is in the first ten trading days of month t, in which case some dates of the $(-10,-1)$ pre-event window are actually in month $t-1$, we skip these pre-event dates in month $t-1$ and only adopt this reverse strategy for those preevent dates in month t after the portfolio formation at the end of month $t-1$.

Table 13 reports the value-weighted excess returns and Fama-French four-factor alphas for monthly quintile portfolios under the standard lottery strategy (Panel A) and our refined strategy (Panel B) as well as their differences (Panel C). The standard lottery strategies achieve a positive and significant alpha for four of six proxies, but our refined strategies significantly increase these return spreads. Take the composite Z-score as an example. Our refined strategy improves the long-short portfolio performance by about 38\% by increasing the average monthly Fama-French four-factor alpha from 1.09% to 1.50%, with the t-statistics of the difference-in-differences equal to 2.48 . In untabulated analysis, we use equally weighted portfolio strategies instead of value-weighted strategies, and we find

Table 13
Enhanced lottery strategy.
This table compares the monthly return spreads of the standard lottery strategy (Panel A), our refined lottery strategy (Panel B), and their differences (Panel C). The standard lottery strategy is constructed by holding a hedge portfolio from longing the bottom quintile lottery portfolios and shorting the top quintile lottery portfolios. Each month, stocks are divided into five portfolios based on each of six lottery proxies from the previous month. Our refined lottery strategy adds a pre-event strategy to the standard lottery strategy. Firms with earnings announcements in a certain month are bought if they belong to the top quintile lottery portfolios and sold if they belong to the bottom quintile lottery portfolios during the ($-10,-1$) pre-event window. To ensure that the strategy is implementable, we only use the pre-event days after the portfolio formation date. The portfolio is held for one month, and the value-weighted excess return and Fama-French four-factor (FF4) alpha spreads are calculated. Lottery proxies are defined as in Table 1. The sample includes NYSE/Amex/Nasdaq common stocks with a price of at least $\$ 1$ per share at the end of the month prior to the earnings announcements. The sample period is from 1972 to 2014 except for Skewexp, which is from 1988 to 2014. Excess returns and FF4 alphas are reported in percentages. The t-statistics are calculated based on the heteroskedasticity-consistent standard errors of White (1980). We only report the bottom and top quintile lottery portfolios and their differences to save space.

Proxy=	Maxret	Skewexp	Prc	Jackpotp	Ivol	Z-score
Panel A: Standard lottery strategy						
Q1	0.577	0.790	0.522	0.547	0.568	0.583
Q5	0.145	0.211	0.523	-0.186	-0.244	-0.449
$R_{\text {Q1-Q5 }}^{e}$	0.432	0.579	-0.001	0.733	0.811	1.031
t-stat	(1.59)	(1.61)	(-0.00)	(2.10)	(2.76)	(2.99)
$\alpha_{Q 1-Q 5}^{\text {FF4 }}$	0.514	0.412	-0.006	0.835	0.881	1.085
t-stat	(2.95)	(1.82)	(-0.03)	(4.36)	(4.85)	(5.01)
Panel B: Refined lottery strategy						
Q1	0.359	0.460	0.256	0.271	0.299	0.322
Q5	-0.236	-0.277	-0.165	-0.729	-0.586	-0.910
$R_{\text {Q1-Q5 }}^{e}$	0.595	0.737	0.421	1.000	0.885	1.231
t-stat	(2.58)	(2.54)	(1.5)	(3.45)	(3.55)	(4.22)
$\alpha_{Q 1-Q 5}^{\text {FF4 }}$	0.810	0.795	0.597	1.288	1.144	1.500
t-stat	(4.16)	(3.37)	(2.53)	(6.55)	(6.31)	(7.30)
Panel C: Refined strategy minus standard strategy						
Q1	-0.218	-0.329	-0.266	-0.276	-0.269	-0.261
Q5	-0.381	-0.488	-0.689	-0.543	-0.342	-0.461
$R_{\text {Q1- } 25}^{e}$	0.163	0.158	0.422	0.267	0.073	0.200
t-stat	(1.23)	(0.94)	(3.20)	(1.71)	(0.55)	(1.46)
$\alpha_{Q 1-Q 5}^{\text {FF4 }}$	0.295	0.382	0.603	0.453	0.263	0.415
t-stat	(1.79)	(2.10)	(3.71)	(2.45)	(1.61)	(2.48)

that the improvement is even more statistically significant. Nonetheless, an important caveat is that in reality the improvement might be much smaller because of the higher transaction costs associated with this refined strategy.

6. Conclusion

In this paper, we argue that investors' preferences for lottery/gambling are time varying and are especially strong ahead of earnings news, probably because of lower inventory costs for speculators. Meanwhile, the countervailing arbitrage forces are more limited because of elevated uncertainty leading to the earnings news. Taken together, we expect that there should be positive return spreads between lottery-like assets and non-lottery assets during the days ahead of earnings announcements. Indeed, we document that the return spreads between lottery-like assets and non-lottery assets have opposite patterns before and after earnings announcements. Most prior studies show that lottery-like stocks can be overvalued and focus on the subsequent price reversal of lottery-like stocks. Thus, our focus on earnings announcements identifies the periods when the overvaluation of lottery-like stocks occurs, rather than their subsequent corrections, as studied by most prior studies.

Our empirical findings are robust across six different proxies that are studied in the literature of lottery-related anomalies. In addition, this inverted-V-shaped pattern in
lottery return spreads is more pronounced among firms with a greater retail order imbalance, among firms with low institutional ownership, and in regions with a stronger gambling propensity, and it is also robust after controlling for past 12 -month returns and various proxies for attention. Moreover, we show that the cumulative return spreads based on other anomalies characteristics such as book-to-market, past returns, profitability, and the opposite of investment over assets increase both before and after earnings announcements. Thus, the inverted-V-shaped cumulative return spread is unique to lottery-related characteristics. This sharp contrast in the shape of cumulative return spreads highlights the unique role of speculation ahead of earnings announcements for our lottery-related characteristics.

Appendix A. Definitions of Key Variables

This appendix provides the details for constructing various lottery and attention measures.

Lottery measures:
Skewexp: The expected idiosyncratic skewness is calculated in two steps following Boyer et al. (2010) (Table 2, Model 6, page 179). First, we estimate the following crosssectional regressions separately at the end of each month t :

$$
i s_{i, t}=\beta_{0, t}+\beta_{1, t} i s_{i, t-60}+\beta_{2, t} i v_{i, t-60}+\lambda_{t}^{\prime} X_{i, t-60}+\varepsilon_{i, t},
$$

where $i s_{i, t}$ and $i v_{i, t}$ denote the historical estimates of idiosyncratic volatility and skewness relative to the Fama and French three-factor model, respectively, for firm i using daily stock data over the past 60 months to month t. $X_{i, t}$ is a set of firm-specific variables including momentum as the cumulative returns over months $t-72$ through $t-61$, turnover as the average daily turnover in month $t-60$, the small-size market capitalization dummy, the medium-size market capitalization dummy, the industry dummy based on the Fama-French 17 -industries definition, and the NASDAQ dummy. After we have these regression parameters, the expected idiosyncratic skewness for each firm i at the end of each month t is then computed in the second step:

Skewexp $_{t} \equiv E_{t}\left[i s_{i, t+60}\right]=\beta_{0, t}+\beta_{1, t} i i_{i, t}+\beta_{2, t} i v_{i, t}+\lambda_{t}^{\prime} X_{i, t}$.
Similar to Boyer et al. (2010) baseline database, our expected idiosyncratic skewness measure dates back to January 1988.

Jackpotp: The predicted jackpot probability is constructed from the baseline model in Conrad et al. (2014) (Table 3, Panel A, page 461). In particular, for each firm, we first estimate the baseline logit model using data from the past 20 years at the end of June every year:
$\operatorname{Prob}_{t-1}\left(\operatorname{Jackpot}_{i, t}=1\right)=\frac{\exp \left(a+b \times X_{i, t-1}\right)}{1+\exp \left(a+b \times X_{i, t-1}\right)}$,
where Jackpot ${ }_{i, t}$ is a dummy that equals 1 if firm i 's \log return in the next 12 -month period is greater than 100%. The vector $X_{i, t-1}$ is a set of firm-specific variables known at time $t-1$, including skewness of log daily returns (centered around 0) over the last three months, log stock return over the past year, firm age as the number of years since appearance on CRSP, asset tangibility as the ratio of gross PPE (property plant and equipment) to total assets, the log of sales growth over the prior year, detrended stock turnover as the difference between the average past 6month turnover and the average past 18 -month turnover, volatility as the standard deviation of daily returns (centered around 0) over the past 3 months, and the \log of market equity in thousands. Next, we use these estimated parameters to construct the out-of-sample predicted jackpot probability (Jackpotp). We reestimate this model for each firm every year from 1951, so our first set of out-of-sample predicted jackpot probabilities is from January 1972.

Ivol: The idiosyncratic stock return volatility is constructed following Ang et al. (2006). In particular, we measure IVOL by the standard deviation of the residual values from the following time-series model:
$R_{i, t}=b_{0}+b_{1} R_{M, t}+b_{2} S M B_{t}+b_{3} H M L_{t}+\varepsilon_{i, t}$,
where $R_{i, t}$ is stock i 's daily excess return on date t, and $R_{M, t}, S M B_{t}$, and $H M L_{t}$ are the market factor, size factor, and value factor on date t, respectively. ${ }^{35}$ We estimate the above equation for each stock each month in the data set using the daily return from the previous month with a minimum requirement of 10 nonmissing values. ${ }^{36}$

[^25]Z-score: Z-score is a monthly composite lottery measure calculated as the average of the individual z-scores of the following five lottery measures: Maxret, Skewexp, Prc, Jackpotp, and Ivol. Each month for each stock, each of the five lottery measures is first converted into its rank and then standardized to obtain its z-score: $z=\left(r-\mu_{r}\right) / \sigma_{r}$, where r is the rank of this measure, and μ_{r} and σ_{r} are the cross-sectional mean and standard deviation of r. The composite z-score is the average of these five z-scores. We require a minimum of three nonmissing z-scores to compute this measure.

Attention measures:
Media: A firm with more discussions in the media tends to draw investor attention because of its high public profile (Barber and Odean, 2008). Media coverage is a dummy being 1 if it has news coverage during the $(-5,-1)$ window. Following Gao et al. (2018), we use the Dow Jones edition of RavenPack news data and include only news stories with an Event Novelty Score (ENS) of 100 to avoid doublecounting the same event of a company. We further require news to have a relevance score of at least 20 to filter out nonessential news. The sample starts in 2000.
$|S U E|$: Extreme earnings news tend to be salient and easily draw investor attention. Following Bali et al. (2019), the magnitude of earnings surprise is computed as the absolute value of standardized unexpected earnings (SUE) in the previous quarter. SUE is the difference in split-adjusted quarterly earnings per share between the current fiscal quarter and the same fiscal quarter in the previous year, divided by the standard deviation of this change over the previous eight quarters.
$P D$: Social interaction tends to stimulate investor attention. Following Bali et al. (2019), we use the population density (PD) of a firm's headquarters to proxy for attention measured as the county-level population in thousands per square mile of land area from the US Census Bureau in 1980, 1990, 2000, and 2010.

SCIH: The social connectedness of people living in the county of a firm's headquarters (SCIH) is based on the Facebook Social Connectedness Index (SCI) introduced by Bailey, Cao, Kuchler, Stroebel, and Wong (2018). The Facebook SCI is a county-pair level measure based on friendship networks among all Facebook users as of April 2016. Following Bali et al. (2019), we compute SCIH as the sum of the SCI of a firm's headquarters with all other counties in the United States.

Attn: Attn is a monthly composite measure for attention calculated as the average of the individual z-scores of the previous four attention measures.

References

Aboody, D., Lehavy, R., Trueman, B., 2010. Limited attention and the earnings announcement returns of past stock market winners. Rev. Account. Stud. 15, 317-344.
Akbas, F., Armstrong, W., Sorescu, S., Subrahmanyam, A., 2015. Smart money, dumb money, and capital market anomalies. J. Financ. Econ. 118, 355-382.
An, L., Wang, H., Wang, J., Yu, J., 2020. Lottery-related anomalies: the role of reference-dependent preferences. Manag. Sci. 66, 473-501.
Anderson, A., Dyl, E., 2005. Market structure and trading volume. J. Financ. Res. 28, 115-131.
Ang, A., Hodrick, R., Xing, Y., Zhang, X., 2006. The cross-section of volatility and expected returns. J. Finance 61, 259-299.

Ang, A., Hodrick, R., Xing, Y., Zhang, X., 2009. High idiosyncratic volatility and low returns: international and further u.s. evidence. J. Financ. Econ. 91, 1-23.
Bagnoli, M., Kross, W., Watts, S., 2002. The information in management's expected earnings report date: a day late, a penny short. J. Account. Res. 40, 1275-1296.
Bailey, M., Cao, R., Kuchler, T., Stroebel, J., Wong, A., 2018. Social connectedness: measurement, determinants, and effects. J. Econ. Perspect. 32, 259-280.
Bali, T., Brown, S., Murray, S., Yang, Y., 2017. A lottery-demand-based explanation of the beta anomaly. J. Financ. Quant. Anal. 52, 2369-2397.
Bali, T., Cakici, N., Whitelaw, R., 2011. Maxing out: stocks as lotteries and the cross-section of expected returns. J. Financ. Econ. 99, 427-446.
Bali, T., Hirshleifer, D., Peng, L., Tang, Y., 2019. Attention, social interaction, and investor attraction to lottery stocks. Unpublished working paper. Georgetown University, University of California, Irvine, Baruch College CUNY, and Fordham University.
Bali, T., Murray, S., 2013. Does risk-neutral skewness predict the crosssection of equity option portfolio returns? J. Financ. Quant. Anal. 48, 1145-1171.
Ball, R., Kothari, S., 1991. Security returns around earnings announcements. Account. Rev. 66, 718-738.
Barber, B., De George, E., Lehavy, R., Trueman, B., 2013. The earnings announcement premium around the globe. J. Financ. Econ. 108, 118-138.
Barber, B., Odean, T., 2000. Trading is hazardous to your wealth: the common stock investment performance of individual investors. J. Finance 56, 773-806.
Barber, B., Odean, T., 2001. Boys will be boys: gender, overconfidence, and common stock investment. Q. J. Econ. 116, 261-292.
Barber, B., Odean, T., 2002. Online investors: do the slow die first? Rev. Financ. Stud. 15, 455-488.
Barber, B., Odean, T., 2008. All that glitters: the effect of attention and news on the buying behavior of individual and institutional investors. Rev. Financ. Stud. 21, 785-818.
Barber, B., Odean, T., Zhu, N., 2009. Do retail trades move markets? Rev. Financ. Stud. 22, 151-186.
Barberis, N., Huang, M., 2008. Stocks as lotteries: the implications of probability weighting for security prices. Am. Econ. Rev. 98, 2066-2100.
Berkman, H., Dimitrov, V., Jain, P., Koch, P., Tice, S., 2009. Sell on the news: differences of opinion, short-sales constraints, and returns around earnings announcements. J. Financ. Econ. 92, 376-399.
Berkman, H., McKenzie, M., 2009. The Trading Behaviour of Institutional Owners and Short Sellers Around Earnings Announcements. Unpublished working paper. University of Auckland and University of Sydney.
Berkman, H., Truong, C., 2009. Event day 0? After-a hours earnings announcements. J. Account. Res. 47, 71-103.
Boulland, R., Dessaint, O., 2017. Announcing the announcement. J. Bank. Finance 82, 59-79.
Boyer, B., Mitton, T., Vorkink, K., 2010. Expected idiosyncratic skewness. Rev. Financ. Stud. 23, 169-202.
Brunnermeier, M., Gollier, C., Parker, J., 2007. Optimal beliefs, asset prices, and the preference for skewed returns. Am. Econ. Rev. 97, 159-165.
Chambers, A., Penman, S., 1984. Timeliness of reporting and the stock price reaction to earnings announcements. J. Account. Res. 22, 21-47.
Cohen, D., Dey, A., Lys, T., Sunder, S., 2007. Earnings announcement premia and the limits to arbitrage. J. Account. Econ. 43, 153-180.
Conrad, J., Dittmar, R., Ghysels, E., 2013. Ex ante skewness and expected stock returns. J. Finance 68, 85-124.
Conrad, J., Kapadia, N., Xing, Y., 2014. Death and jackpot: why do individual investors hold overpriced stocks? J. Financ. Econ. 113, 455-475.
deHaan, E., Shevlin, T., Thornock, J., 2015. Market (in)attention and the strategic scheduling and timing of earnings announcements. J. Account. Econ. 60, 36-55.
DellaVigna, S., Pollet, J., 2009. Investor inattention and friday earnings announcements. J. Finance 64, 709-749.
Doran, J., Fodor, A., Jiang, D., 2013. Call-put implied volatility spreads and option returns. Rev. Asset Pricing Stud. 3, 258-290.

Doran, J., Jiang, D., Peterson, D., 2012. Gambling preference and the new year effect of assets with lottery features. Rev. Finance 16, 685-731.
Edelen, R., Ince, O., Kadlec, G., 2016. Institutional investors and stock return anomalies. J. Financ. Econ. 119, 472-488.
Engelberg, J., McLean, D., Pontiff, J., 2018. Anomalies and news. J. Finance 73, 1971-2001.
Fama, E., French, K., 1993. Common risk factors in the returns on stocks and bonds. J. Financ. Econ. 33, 3-56.
Fama, E., French, K., 2015. A five-factor asset pricing model. J. Financ. Econ. 116, 1-22.
Fama, E., French, K., 2018. Choosing factors. J. Financ. Econ. 128, 234-252.
Fama, E., MacBeth, J., 1973. Risk, return, and equilibrium: empirical tests. J. Polit. Econ. 81, 607-636.

Fox, C., 1999. Strength of evidence, judged probability, and choice under uncertainty. Cogn. Psychol. 38, 167-189.
Frazzini, A., Lamont, O., 2007. The earnings announcement premium and trading volume. Working paper, NBER.
Gao, P., Parsons, C., Shen, J., 2018. Global relation between financial distress and equity returns. Rev. Financ. Stud. 31, 239-277.
Gao, X., Lin, T., 2015. Do individual investors treat trading as a fun and exciting gambling activity? Evidence from repeated natural experiments. Rev. Financ. Stud. 28, 2128-2166.
Gervais, S., Kaniel, R., Mingelgrin, D., 2001. The high-volume return premium. J. Finance 56, 877-919.
Givoly, D., Palmon, D., 1982. Timeliness of annual earnings announcements: some empirical evidence. Account. Rev. 57, 486-508.
Green, C., Hwang, B., 2012. Initial public offerings as lotteries: skewness preference and first-day returns. Manag. Sci. 58, 432-444.
Hilary, G., Hui, K., 2009. Does religion matter in corporate decision making in America? J. Financ. Econ. 93, 455-473.
Hou, K., Xue, C., Zhang, L., 2015. Digesting anomalies: an investment approach. Rev. Financ. Stud. 28, 650-705.
Hvidkjaer, S., 2006. A trade-based analysis of momentum. Rev. Financ. Stud. 19, 457-491.
Johnson, T., So, E., 2018. Time will tell: information in the timing of scheduled earnings news. J. Financ. Quant. Anal. 53, 2431-2464.
Kumar, A., 2009. Who gambles in the stock market? J. Finance 64, 1889-1933.
Kumar, A., Page, J., Spalt, O., 2011. Religious beliefs, gambling attitudes, and financial market outcomes. J. Financ. Econ. 102, 671-708.
La Porta, R., Lakonishok, J., Shleifer, A., Vishny, R., 1997. Good news for value stocks: further evidence on market efficiency. J. Finance 52, 859-874.
Lee, C., 1992. Earnings news and small traders. J. Account. Econ. 15, 265-302.
Lee, C., Ready, M., 1991. Inferring trade direction from intraday data. J. Finance 46, 733-746.
Nagel, S., 2012. Evaporating liquidity. Rev. Financ. Stud. 25, 2005-2039.
Newey, W., West, K., 1987. A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix. Econometrica 55, 703-708.
Novy-Marx, R., 2013. The other side of value: the gross profitability premium. J. Financ. Econ. 108, 1-28.
Rosch, D., Subrahmanyam, A., van Dijk, M., 2017. The dynamics of market efficiency. Rev. Financ. Stud. 30, 1151-1187.
So, E., Wang, S., 2014. News-driven return reversals: liquidity provision ahead of earnings announcements. J. Financ. Econ. 114, 20-35.
Trueman, B., Wong, M., Zhang, X., 2003. Anomalous stock returns around internet firms' earnings announcements. J. Account. Econ. 34, 249-271.
White, H., 1980. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica 48, 817-838.
Xing, Y., Zhang, X., Zhao, R., 2010. What does the individual option volatility smirk tell us about future equity returns? J. Financ. Quant. Anal. 45, 641-662.

[^0]: We thank Zhuo Chen, Jay Coughenour, Zhiguo He, Shiyang Huang (discussant), Peter Kelly (discussant), Xiaoxia Lou, Christopher Malloy, Ron Masulis, Veronika Pool (discussant), Avanidhar Subrahmanyam (referee), and seminar participants at Auburn University, Federal Reserve Bank of Richmond, Shanghai Advanced Institute of Finance, University of Arkansas, University of Central Florida, University of Delaware, University of Melbourne, University of Missouri, University of New Mexico, University of New South Wales, University of Technology Sydney, University of Tennessee, University of Texas at San Antonio, 2017 China International Conference in Finance, University of Oregon Summer Finance Conference, and 2019 American Finance Association annual meeting for helpful comments and discussions. Yu acknowledges financial support from the National Natural Science Foundation of China (Grant no. 71790591).

 * Corresponding author.

 E-mail addresses: liubb@pbcsf.tsinghua.edu.cn (B. Liu), hzw0101@auburn.edu (H. Wang), yujf@pbcsf.tsinghua.edu.cn (J. Yu), shenzhao@cuhk.edu.cn (S. Zhao).

[^1]: ${ }^{1}$ A partial list includes Barberis and Huang (2008); Boyer et al. (2010); Bali et al. (2011); Green and Hwang (2012); Bali et al. (2017); Conrad et al. (2014), and An et al. (2020), among others.

[^2]: ${ }^{2}$ For example, Aboody et al. (2010) provide evidence of the increase in investor attention before earnings announcements that can lead to price run-ups for stocks in the top percentile of past 12-month returns.
 ${ }^{3}$ For example, Berkman et al. (2009) show that, on average, short sellers decrease their positions prior to earnings announcements and increase their positions shortly thereafter.
 ${ }^{4}$ We use "speculative assets" and "lottery-like assets" interchangeably in the paper.
 ${ }^{5}$ Indeed, we find that earnings surprise is more negative for lotterylike stocks (see Table A1 in the Online Appendix), suggesting that investors not only may overweight the small probability events but also may overestimate the small probability for large return outcomes. This is consistent with Fox (1999), who argues that individuals tend to both overweight and overestimate small probability outcomes. In addition, Brunnermeier et al. (2007) show that investors' optimal beliefs could be overly optimistic about the probability of good states, leading to preferences for skewness. Thus, the more pronounced underperformance on and after announcement days could be partially due to the usual expectation errors, corrected upon the announcements.

[^3]: ${ }^{6}$ For a recent comprehensive study on anomaly returns around earnings announcements, see Engelberg et al. (2018).

[^4]: ${ }^{7}$ Bali et al. (2011) and Bali et al. (2017) argue that preferences for lottery-like stocks can also account for the puzzle that firms with low volatility and low beta tend to earn higher risk-adjusted returns.

[^5]: ${ }^{8}$ In addition, several studies have employed options data to study the relation between alternative skewness measures and future returns. For instance, see Xing et al. (2010), Bali and Murray (2013), and Conrad et al. (2013).
 ${ }^{9}$ There might be some exceptions though. For example, Barber et al. (2013) argue that the earnings announcement premium could be due to the idiosyncratic risk that cannot be diversified away. An elaborated model based on their argument could potentially generate a higher price run-up for lottery stocks relative to non-lottery stocks before earnings announcements. However, for a pure risk-based story to convincingly explain our pattern, the model needs to produce lower

[^6]: returns for lottery stocks relative to non-lottery stocks after earnings announcements and also needs to show the lack of an inverted Vshape around earnings announcements for other anomalies such as the profitability premium at the same time.
 ${ }^{10}$ Following Berkman and Truong (2009), our IBES data start in 1985 because of insufficient data prior to that year.

[^7]: ${ }^{11}$ We follow the previous literature (e.g., Barber et al., 2009) to restrict our analysis to the sample period of 1983 to 2000 for NYSE/Amex stocks because it is not appropriate to distinguish institutional from retail trades based on the order size after the decimalization since 2000, and the trading mechanism is different in Nasdaq.
 ${ }^{12} \mathrm{We}$ thank Facebook for providing the SCI data. See Bailey et al. (2018) for more details about the data.

[^8]: ${ }^{13}$ See Hvidkjaer (2006) for more details on the construction of this measure.

[^9]: ${ }^{14}$ Following Aboody et al. (2010), we use the average RIMB during a period after the post-event window as the benchmark to normalize RIMB in our definition of abnormal RIMB. In particular, we use the average RIMB during the six five-day periods beginning 30 days after the earnings announcement and ending 59 days after. The benchmark window ends 59 days after the event, rather than 89 days as in Aboody et al. (2010), to ensure there is no overlap with the pre-event window in the next earnings announcement. Our results are similar if we use the average RIMB during the 12 five-day periods beginning 30 days after the earnings announcement and ending 89 days after as the benchmark RIMB, as in Aboody et al. (2010). In untabulated tests, we also use an alternative benchmark RIMB for the pre-event (post-event) window to be the RIMB during the five-day period immediately before (after) the earnings announcement and obtain similar results. In fact, our results are very similar when using different definitions.

[^10]: ${ }^{15}$ About 30% of the trading volume in individual equity options is in the ISE Open/Close Trade Profile. The moneyness variable in the ISE data starts in November 2007, so our sample starts in 2008.

[^11]: ${ }^{16}$ These 38 countries are Argentina, Australia, Austria, Belgium, Brazil, Canada, Switzerland, Chile, China, Germany, Denmark, Spain, Finland, France, United Kingdom, Greece, Hong Kong, Indonesia, India, Israel, Italy, Japan, South Korea, Mexico, Malaysia, Netherlands, Norway, New Zealand, Pakistan, Philippines, Poland, Portugal, Singapore, Sweden, Thailand, Turkey, the United States, and South Africa.
 ${ }^{17}$ The data to construct the other two lottery proxies are limited for non-US stocks; thus, we only use these three easy-to-calculate proxies to compute our lottery proxy.

[^12]: ${ }^{18}$ We skip ten days prior to the earnings announcement date to avoid any look-ahead bias. For example, General Motors released its 2007 third quarter earnings on November 7, 2007; ten days before this event was October 24, 2007. To make sure that all the information is publicly available and to avoid any market microstructure complexity, we use proxies from the end of September 2007 in our portfolio analysis.
 ${ }^{19}$ For quarterly earnings announcements that firms make on a regular basis, firms are required by law to announce the conference call a reasonable period of time ahead. Thus, most firms (about 90\%) announce their earnings announcement schedule at least six days ahead (see, e.g., Boulland and Dessaint, 2017).
 ${ }^{20}$ For example, deHaan et al. (2015) show that almost 50% of earnings announcements are made after trading hours during their sample period of 2000-2011.

[^13]: ${ }^{21}$ As another robustness check, in untabulated tests, we repeat the analysis using the earlier of the IBES earnings announcement and Compustat earnings announcement dates as the definition of the earnings announcement date, following DellaVigna and Pollet (2009). Our results remain similar and are available upon request.

[^14]: ${ }^{22}$ Thus, the overall five-day return for the momentum anomaly during the post-event window in our sample is close to zero. However, the overall five-day return during the post-event window is -42 bps in Aboody et al. (2010) sample. There are at least three reasons that led to the discrepancy with Aboody et al. (2010). First, we skip one month in forming the momentum portfolio, following the momentum tradition. Second, we use quintile sorting, whereas Aboody et al. (2010) use decile sorting. Third, our sample is different from theirs. We use common shares listed on NYSE/Amex/Nasdaq from CRSP with all fiscal year-ends, and issuing earnings announcements on Compustat from January 1, 1972 to December 31, 2014, whereas the sample in Aboody et al. (2010) includes all CRSP stocks with a December 31 fiscal year-end, and issuing earnings announcements on Compustat from January 1, 1971 to September 30, 2005. If we use a similar sample, decile sorting, and the same definition of past winners, we actually obtain the same 10 -minus- 1 portfolio spread of -42 bps as in Aboody et al. (2010).

[^15]: ${ }^{23}$ Berkman et al. (2009) hypothesize that the price run-up during the days leading up to earnings announcements for stocks with large differences of opinion should be greater than those with small differences of opinion, because of the short-sale constraint. Lottery-like stocks might have more information uncertainty, which induces larger differences of opinion among investors. Thus, to make sure that our results are not driven by the potential correlation between our proxies for the lottery feature and differences of opinion, we directly control for turnover, which is a proxy for differences of opinion. In Table A2 in the Online Appendix, we use analyst forecast dispersion as an alternative proxy for differences of opinion and obtain similar results.

[^16]: ${ }^{24}$ In untabulated results, we find that the return spreads are statistically significant within all of the ten past 12 -month returns deciles.

[^17]: ${ }^{25}$ The average of these two numbers is higher than our benchmark of 52 bps . This is due to the fact that the pre-announcement lottery premium in the sample starting from 2000 is stronger than that in our full sample starting from 1972.

[^18]: ${ }^{26}$ In Table A4 in the Online Appendix, we show that our results are robust to using alternative attention proxies including abnormal turnover, abnormal trading volume (Gervais et al., 2001; Barber and Odean, 2008), and recency (Bali et al., 2019).

[^19]: ${ }^{27}$ In addition, the earnings announcement news for lottery stocks tends to be worse than that for non-lottery stocks. This fact also partially contributes to the underperformance of lottery stocks after earnings announcements.

[^20]: ${ }^{28}$ As shown in Table A5 in the Online Appendix, we obtain similar results when using alternative attention proxies including abnormal turnover, abnormal trading volume (Gervais et al., 2001; Barber and Odean, 2008), and recency (Bali et al., 2019).

[^21]: ${ }^{29}$ We thank Terrance Odean for sharing the data with us.
 ${ }^{30}$ We focus on the behavior of the OTM call options near the announcement dates as individual investors like to trade call options more than put options. Indeed, Doran et al. (2013) show that individual investors demand for call options is about 16.4 contracts per day, and the demand for put options is about 10.5 contracts per day.

[^22]: ${ }^{31}$ In untabulated tests, we also find that the retail order imbalance for OTM calls on lottery stocks increases more than it does for non-lottery stocks before earnings announcements.
 ${ }^{32}$ We thank the referee for making this suggestion. Gao and Lin (2015) also present evidence that investors treat trading as an exciting gambling activity.

[^23]: ${ }^{33}$ We did not separate a group of neutral news when CAR is used as the proxy for news, since very few observations have CAR being exactly zero.

[^24]: ${ }^{34}$ Quarterly MFFLOW and HFFLOW as the sum of monthly MFFLOW and HFFLOW within a quarter, respectively. We follow Akbas et al. (2015) to compute monthly MFFLOW as MFFLOW $=\frac{\sum_{i=1}^{N}\left[T N A_{i, t}-T N A_{i t-1}\left(1+M R E T_{i, t}\right)\right]}{\sum_{i=1}^{N} T N A_{i t-1}}$, where $T N A_{i, t}$ is the total net assets of equity mutual fund i in month t and $\operatorname{MRET}_{i, t}$ is the monthly return of fund i in month t, net of fees. HFFLOW is defined similarly.

[^25]: ${ }^{35}$ We thank Ken French for providing updated series for these factors.
 ${ }^{36}$ Our results are not sensitive to this cutoff.

