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Abstract

This paper proposes a hybrid machine learning (ML) framework for fixed-income

securities, by integrating ML-based forecasts of price returns with bond carry to form

composite expected return estimates. Using a comprehensive dataset of corporate

bonds over the 1992–2019 period, we illustrate that the proposed ML estimators deliver

superior forecasting accuracy and dominate conventional ML models applied directly

to total returns. This dichotomy highlights bond markets’ efficiency in pricing carry-

related risks and ML’s incremental value in capturing deviations from yield-implied

expectations. High-yield bonds exhibit the greatest return predictability, driven by

nonlinear credit risk and liquidity shocks, whereas carry strategies remain superior

for bonds issued by unlisted firms. Portfolio tests reveal that long-short strategies

based on pure ML approaches generate gross monthly alphas of 1.74% per month,

but transaction costs erode 60–80% of gains due to high turnover. In contrast, carry-

driven ML strategies sustain net returns of 1.15% with lower turnover. Our results

highlight the necessity of integrating asset-class-specific structure into ML frameworks

and caution against direct adoption of equity-style strategies in fixed income.

JEL Classification: G12, G17, C38, C45, C53

Keywords: Corporate bond returns, Machine learning, Return predictability, Carry

*We would like to thank Stefano Giglio, Amit Goyal, Jingzhi Huang, Kewei Hou, Jiacui Li, Baozhong
Yang and Jianfeng Yu; seminar participants at CUHK-Shenzhen, Fudan University, Peking University, and
Tsinghua University for helpful comments and suggestions.

�Qiao, China School of Banking and Finance at University of International Business and Economics,
10 Huixindongjie, Chaoyang District, Beijing 100029, China, qiaofang@uibe.edu.cn; Zhan, PBC School of
Finance, Tsinghua University, Beijing, 100083, China; shizh@pbcsf.tsinghua.edu.cn. Zhu, PBC School of
Finance, Tsinghua University, Beijing, 100083, China.



1 Introduction

The rapid adoption of machine learning (ML) in empirical asset pricing has equipped re-

searchers with novel tools to address high dimensionality, nonlinearities, and interaction

effects inherent in return prediction. Recent advances in this field show that ML methods

significantly outperform traditional linear models in inferring risk premium on individual se-

curities and, more importantly, improvements in predictive accuracy translate into economi-

cally meaningful portfolio gains. On the other hand, machine-learning-based investing is still

in its infancy for fixed-income securities, where factor strategies still comprise a limited part

of the overall investment strategies. While machine learning methods shown fruitful in other

asset classes seem equally applicable to fixed-income markets, bond returns present unique

structural characteristics. Specifically, the inherent predictability embedded in yield curve

dynamics—formalized through the concept of carry—provides a natural starting point for

bond return prediction. Indeed, Koijen, Moskowitz, Pedersen, and Vrugt (2018) show that

carry strategies perform well in government bond and credit markets. In this paper, we aim

to build augmented machine learning estimators by incorporating this inherent component

of bond returns, and empirically test its effectiveness for an important class of fixed-income

assets, namely corporate bonds.

Bond carry is the expected return on a bond when the yield curve stays the same. To

motivate our analysis, consider the h-period excess return on a m-period discount bond,
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where yt denotes log yield at time t. Therefore, the predictable component of a bond’s
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excess return equals its carry plus its expected price appreciation. That carry is a model-free

characteristic directly measurable ex ante from the yield curve makes it special. Expected

price return, by contrast, need to be inferred using an asset pricing model or in a mode-free

way. Building on this insight, we focus on machine learning forecasts of price returns and

combine them with bond carry to form a composite estimator of total returns. In particular,

we are interested in the horse race between this carry-based estimator and an alternative

one that directly apply machine learning methods to total return prediction.

Corporate bonds represent a cornerstone of global financial markets, with over $10 trillion

outstanding in the U.S. alone, yet their return dynamics remain less understood than those of

equities. While extensive literature examines cross-sectional predictability in stock returns,

corporate bond markets present unique challenges: illiquidity, heterogeneous credit risk, and

sparse transaction data, particularly for older issuances. We test the empirical performance of

alternative machine learning approach to predicting corporate bond returns, by leveraging a

comprehensive dataset spanning over 1.26 million U.S. bond-month observations from 1992

to 2019. In particular, we consider 60 bond-specific characteristics and 153 firm/equity

characteristics to capture both security-level and issuer-level determinants of bond returns.

First, we demonstrate that the carry-driven ML strategy substantially outperform the

conventional one for all ML algorithms, achieving out-of-sample R2 values up to 3.68%

for bonds issued by listed firms. Even when predicting total excess returns, a simple yield-

implied carry benchmark dominates all ML approaches, with an R2 of 2.95% versus 2.24% for

the best ML model. This result underscores the efficiency of bond markets in pricing carry-

driven compensation but highlights ML’s edge in capturing deviations from yield-implied

expectations.

Second, we document stark differences in predictability across bond types. For high-

yield bonds, ML models generate superior price return forecasts (R2 = 5.13%) compared

to investment-grade issues, reflecting the greater role of nonlinear credit risk dynamics and

liquidity shocks in speculative-grade markets. Conversely, yield-based benchmarks remain

dominant for private firms, where equity data unavailability limits ML’s informational ad-

vantage.
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Third, we assess economic value through portfolio strategies. While ML-based long-short

decile portfolios yield gross monthly alphas of 1.74%, transaction costs erode 60–80% of these

gains due to high turnover. In contrast, yield-implied strategies exhibit lower turnover and

sustain net returns of 1.15%, suggesting that much of ML’s statistical predictability reflects

compensation for liquidity risk rather than exploitable mispricing.

Our findings have critical implications for both theory and practice. They affirm that

corporate bond markets efficiently price yield-driven risk premia but leave room for ML to

enhance price return forecasts, particularly in high-yield segments. For investors, the results

caution against direct adoption of equity-style ML strategies in bonds unless coupled with

transaction cost mitigation. Methodologically, we advance the literature by integrating carry

decomposition into ML frameworks—a approach that could extend to other fixed-income

assets.

This paper contributes to the broad research agenda that seeks to characterize and under-

stand differences in expected returns across assets. A recently emerging literature employs

a gamut of machine learning methods to extract from a “zoo” of characteristics the infor-

mation most relevant to individual security returns, including stock returns (Gu, Kelly, and

Xiu, 2020; Chen, Pelger, and Zhu, 2023; Leippold, Wang, and Zhou, 2021), bond returns

(Bianchi, Bchner, and Tamoni, 2021; Bali, Goyal, Huang, Jiang, and Wen, 2021a; Feng,

He, Wang, and Wu, 2025), option returns (Bali, Beckmeyer, Moerke, and Weigert, 2023;

Goyenko and Zhang, 2021), and currency returns (Filippou, Rapach, Rapach, Taylor, and

Zhou, 2021). Most all of these studies show that machine learning enables more accurate

inferences of asset risk premiums and brings sizable economic gains to investors. Our re-

sults point to several potential pitfalls in applying these techniques to certain asset markets,

which are dominated by institutional investors and suffers great market illiquidity. The im-

pact of transaction costs on the economic significance of return predictability is discussed

in Chordia, Goyal, Nozawa, Subrahmanyam, and Tong (2017). We provide complementary

evidence that, as an increasing number of characteristics are included in the formation of re-

turn forecasts, trading costs of corresponding high-minus-low strategy increase dramatically.

While machine learning offers valuable insights into the complex dynamics of bond prices,
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our findings suggest that its practical application is constrained by market frictions and the

efficiency of yield-based risk premiums.

On the other hand, the bond carry serves as a natural benchmark in fixed income markets

and related trading strategies are widely used by practitioners since 1990s (Ilmanen and Say-

ood, 2002). This paper contributes to this strand of literature by introducing ML frameworks

that explicitly account for bond carry. In this sense, our results also complement and extend

the finding of Koijen et al. (2018) that carry is a strong positive predictor of returns in many

asset classes. Our findings affirm that corporate bond markets efficiently price carry-driven

risk premia but leave room for ML to enhance price return forecasts, particularly in high-

yield segments. For investors, the results caution against direct adoption of equity-style ML

strategies in bonds unless coupled with transaction cost mitigation. Methodologically, we

advance the literature by integrating carry decomposition into ML frameworks—a approach

that could extend to other fixed-income assets.

Finally, this paper is related to previous studies that focus on the yield-based estimates

of expected corporate bond returns in their asset pricing tests (Campello, Chen, and Zhang,

2008; de Jong and Driessen, 2012; Bongaerts, de Jong, and Driessen, 2017). They argue

that this forward-looking measure overcomes some well-known limitations associated with

ex post average returns. Our results offer some empirical justification for their methodology

from another perspective: at least for these characteristics having been shown to possess

significant in-sample predictive power, they do not capture a larger fraction of forecastable

variations in corporate bond returns, in real time, than the simple yield-based estimates.

The remainder of the paper is organized as follows. Section 2 describes the data sets used

in our empirical analysis. Section 3 presents our empirical design. Section 4 focuses on the

forecasting performance of machine learning models. In Section 5, we assess the economic

value of machine learning forecasts. Section 6 concludes.
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2 Data

2.1 Data Sources

Since common machine learning practice requires large data sample, we follow the recent

studies in the corporate bond literature (Chordia et al., 2017) and combine multiple data

sources to extend the sample back to pre-Trace era. Our compiled data set comprises cor-

porate bond returns from the following six data sources:

� The Lehman Brothers fixed income database covers month-end bid prices from January

1973 to March 1998. We follow previous studies (e.g., Eom et al. (2004)) by excluding

“matrix” prices, which derived from price quotes of bonds with similar characteris-

tics (Warga and Welch, 1993).

� Beginning in 1994, the National Association of Insurance Commissioners (NAIC) began

providing transaction data based on Schedule D filings by all of its member insurance

companies. Many studies (e.g., (Hong and Warga, 2000; Campbell and Taksler, 2003))

indicate that these transactions compose a significant portion of the market for publicly

traded corporate bonds. We access the NAIC database through Mergent FISD and

remove transactions arising from the exercise of call options.

� The BofAML database provides daily quotes for individual bonds covered ICE BofA

bond indices, with the sample period spanning from January, 1997. These quotes are

commonly used by bond mutual funds and other institutional investors to mark their

portfolios to market. Following Schaefer and Strebulaev (2008), we focus on bonds

included into either the ICE BofA investment-grade index (MERC0A0) or the ICE

BofA US High Yield Index (MERH0A0).

� Starting from July 2002, the Trade Reporting and Compliance Engine (TRACE) pro-

vides comprehensive coverage of transactions for publicly traded OTC corporate bonds.

We extract data from the enhanced version of TRACE, which includes more HY bond

transactions in early years and more precise information about transaction volumes
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than the “standard” TRACE does. The algorithm of Dick-Nielsen (2013) is employed

to identify and correct reporting errors in TRACE data, and we restrict our sample to

bond transaction data without duplicates, reversals, and corrections/cancellations.

� Reuters Fixed Income Database collects daily quotes provided by major dealers in the

U.S. corporate bond market since 1991. Choi (2013) and Choi and Richardson (2016)

show that at monthly frequency Reuters dealer quotes reflect transaction prices quite

well. Unlike the Lehman and BofAML data, the Reuters data does not target a specific

set of bonds that comprise their indices.

� The IHS Markit bond pricing database collects daily price information from more than

thirty dealers to compute a composite price. Similar to the the Reuters database,

it is supposed to provide a comprehensive picture of the corporate bond universe and

therefore extensively used in studies on the secondary market liquidity (Friewald et al.,

2012; Schestag et al., 2016). Our sample of the Markit data spans from January, 2003

to June, 2019.

While the Lehman data are backdated to 1970s, we do not pursue forecasting bond re-

turns over the pre-1991 period, in which daily price observations were generally unavailable.

The reason is that the calculation of bond-level illiquidity measures, e.g., the gamma of

Bao et al. (2011), requires at least daily price observations, if not transaction-by-transaction

information. However, we do make use of the Lehman data before 1990s to construct some

bond-level characteristics (e.g., long-term reversal and idiosyncratic volatility), which re-

quires monthly bond returns over the past few years. To ensure that these characteristics

have sufficient observations in early years, we focus on the sample between July 1992 and

June 2019 for our empirical analysis.
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2.2 Individual Bond Returns

From each database, we collect consecutive monthly prices and compute the month-t bond

return as

ri,t =
Pi,t + AIi,t + Ci,t − Pi,t−1 − AIi,t−1

Pi,t−1 + AIi,t−1

, (1)

where Pt denotes the clean price at the end of month t, AIt is the corresponding accrued

interest, and Ci,t is the coupon paid in month t. To compute monthly returns for TRACE

and NAIC, we follow the standard practice in the literature by calculating Pt as the volume-

weighted average of all trades within five trading days of the month-end (e.g., Chordia

et al. (2017))1 Regarding quote-based databases, the Lehman data is already of the monthly

frequency, and we simply take the last available daily price from other databases, given that

it take places within the last five trading days of the month. When there are returns for the

same bond-month available from multiple sources, we take the first available return in the

following sequence: TRACE, NAIC, BofAML, Lehman, Markit, and Reuters. This sequence

gives precedence to trade-based returns.

We apply the following standard filters to the combined data set of bond returns: (1)

the issue’s Mergent bond type is in “US corporate debentures” or “US corporate MTN”

categories (CDEB or CMTN, respectively); (2) bonds are denominated in US dollars, senior

unsecured, and with a fixed coupon rate; (3) bonds are neither convertible nor exchangeable,

and (4) bonds have at least one year to maturity. These filters lead to a union of 44,809

bonds issued by 6,021 companies over the 1992-2019 period. The filtered sample contains an

average of 6,895 bonds per month, arguably the largest cross section among recent studies

on corporate bond returns.

2.3 Individual Bond Carry and Price Returns

Following Jensen et al. (2018), we decompose corporate bond returns into price returns and

yield-implied carry.

1It is also equivalent to the approach of Bao and Pan (2013), who adopt the trade-size weighted average
of clean prices within the last seven calendar days of the month.
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By definition, bond yields are the expected returns of holding the bond to maturity if

no credit event occurs. Assuming that the term structure of expected returns is flat,2 an

estimate of expected excess returns can be derived by correcting for the expected default

loss,

r̃xi,t+1 = (1 + yi,t) (1− (1−Rt)πi,t(T − t))1/(T−t) − (1− rft), (2)

where πi,t(T − t) is the default probability of bond i with T − t years to maturity, Rt denotes

the recovery rate given default, and the risk-free rate rft is proxied by the one-month T-bill

rate at time t.

There are many ways to obtain estimates of the default probability for individual bonds,

including (1) the Merton distance to default (D2D) as well as its variants as examined

by Bharath and Shumway (2008), (2) the doubly-stochastic hazard model with observable

coparties (Duffie et al., 2007), (3) the Moody’s expected default frequency (EDF) score which

combines D2D with information from equity markets and financial statements. And most of

these estimation methods require the bond issuers to be publicly listed firms. In this paper,

we employ a simple estimator of default probabilities which is applicable to all bonds. That

is, for yield observations of bonds with letter rating k in year j, we calibrate their default

probabilities to the Moody’s cumulative issuer-weighted default rate for rating k over the

period from 1970 to year j − 1, with the time to maturity rounded to the nearest integer.

While we calculate these cumulative default rates by retrieving data from the Moody’s

Default & Recovery Database (DRD), they could also be derived from the (annual) cohort-

level statistics as included in the appendix of Moody’s annual default studies. Therefore,

our estimates of default probabilities can be easily derived using public information, without

knowledge on the structural or reduced-form models of credit risk.

In a similar manner (yet with lower separating capacity), the recovery rate is assumed

the same for all bond observations in year j and calibrated to the Moody’s issuer-weighted

average recovery rates for senior unsecured bonds up to year j − 1. Note that the temporal

2Bongaerts et al. (2017) empirically investigate the slope of the term structure of expected bond returns
and find a slope coefficient of 2.5 basis points per duration-year. As indicated by our unreported results,
incorporating this slope coefficient into our construction of yield-implied expected bond returns leads to a
slight improvement in their prediction accuracy.
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variations in cumulative default rates and recovery rates reflect macroeconomic conditions

(Chen, 2010) as well as the updating of beliefs (Benzoni et al., 2015). For example, the

calibrated 10-year default probability for AA-rated bonds is about 0.57% for bonds in 2005

and increases to 0.84% for bonds in 2010.

We define the price return as the difference between bond returns in Eq. (1) and yield-

implied carry in Eq. (2).

2.4 Bond Return Predictors

Following Lewellen (2015), we focus on characteristics that have been demonstrated by

existent studies as significant bond return predictors. Specifically, we survey the credit bond

literature for a list of candidate “anomaly” characteristics, both at the security level and

at the issuer level. We then narrow the list down to ensure adequate data coverage going

back in time. We ultimately settle on 60 bond characteristics and 153 equity (firm-level)

characteristics by Jensen et al. (2023). Appendix A provides a detailed discussion and

definition of all these bond and stock characteristics.

The first category of predictors is bond characteristics, which covers basic bond informa-

tion such as size, credit rating, and duration. The effect of credit rating and duration have

been exhaustively examined since the first few studies on the cross section of individual bond

returns (Gebhardt et al., 2005b,a). Houweling and Van Zundert (2017) show that size-sorted

portfolios generate alphas in the corporate bond market. It also covers past bond returns,

such as bond momentum (Jostova et al., 2013), downside risk and short-term reversal, long-

term reversal (Bali et al., 2021b), and skewness. We also consider security-level illiquidity. To

address the concern that the gamma estimated with lower-frequency data might be less in-

formative than its counterpart with transaction data (Dick-Nielsen et al., 2012), we consider

alternative liquidity proxies as well. The first one included is Hasbrouck (2009)’s measure

based on Gibbs sampling. As shown by Schestag et al. (2016), among tens of low-frequency

measures for transaction costs (constructed with daily data) in the corporate bond market,

the Hasbrouck measure has the lowest mean bias against many high-frequency benchmarks
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(constructed with transaction data).

The second category includes 153 firm-level characteristics in Jensen et al. (2023). For

example, Chordia et al. (2017) find that asset growth, profitability, equity reversal, and equity

momentum posses significant predictive power for corporate bond returns after controlling

for bond characteristics. Also, results of Choi and Kim (2018) indicate that asset growth

and investment-asset ratio are negatively related to corporate bond returns, and that the

effect of equity momentum is positive. Finally, Israel et al. (2018) show that three measures

of safety—market leverage, gross profitability, and duration—are priced in the cross section

of corporate bond returns.

2.5 Summary Statistics

As shown in Table 1, the combined data sample contains nearly 1.26 million observations

of monthly bond returns. The mean and standard deviation of monthly excess returns

are 0.40% and 2.60%, largely consistent with the magnitude as reported in previous studies.

The reported percentiles show that, unlike equity returns, the distribution of corporate bond

returns is rather symmetric, exhibiting merely a small degree of right skewness. The average

of monthly price returns is 0.10%, with a standard deviation of 2.50%, while the average of

monthly yiled implied carry is 0.40%, with a standard deviation of 0.20%.

[Insert Table 1 Here]

It is worth noting that our compiled data set is largely immune to the sample selection

bias arising from the illiquidity of the secondary corporate bond market. Specifically, if only

the transaction data is used to study corporate bond returns, a bond could have quite a

few missing observations from time to time before it is removed from the sample due to

default or some maturity restriction. This issue is not a concern in studies on the long-

term performance of corporate bonds, but might give rise to selection bias when testing

the cross-sectional predictability. In particular, if transactions occur only when the value

of the information signal is sufficient to exceed the trading costs, as modelled in Lesmond

et al. (1999) and Chen et al. (2007), then those missing observations essentially reflect an
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increase in transaction costs, which could result in a large price discount if a transaction

has to be made (He and Xiong, 2012; He and Milbradt, 2014). It follows that a portfolio

formed at time t only with bonds having time-t+1 return observations (this information is

unknown at time t) is likely to have an upward bias in its performance assessment. Since

our comprehensive data set consists of transactions and dealer quotes from six data sources,

most issues have zero missing observations of monthly returns. For comparison, we examine

the stability of the bond cross sections in both our data set and the Trace data. Over the

same period (from July 2002 to June 2019), about 74% of bonds in our data set always have

consecutive monthly returns throughout their presence in our sample, whereas this fraction

is merely 24% for the Trace sample.

3 Empirical Methodology

Our primary tests focus on monthly return forecasts derived from machine learning models

and from contemporaneous bond yields. In this section, we first summarize the formation of

different return forecasts and then examine their effectiveness in out-of-sample tests. Espe-

cially, we assess the impact of model choice on the absolute prediction performance as well

as the relative performance against the yield-based return forecasts.

3.1 Estimation Strategy

Following Bianchi et al. (2021), we consider a variety of machine learning methods with

increasing complexity. For penalized regressions, we implement Ridge regressions, Lasso

(Tibshirani, 1996), and Elastic Net (Zou and Hastie, 2005). For linear dimension reduction

techniques, we use principal component regressions (PCR) and partial least squares (PLS).

To handle nonlinearity and interaction effects, we consider tree-based methods, which include

XGBoost, random forests (Breiman, 2001), and ExtraTrees. Appendix B provides a detailed

description of these methods.

As standard in the literature, we estimate machine learning models recursively by dividing
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our data into three disjoint subsamples. We keep the temporal ordering of the data, such

that the validation set directly follows the training set and the testing sample directly follows

the validation set. Our sample splitting scheme generally resembles previous studies: the

initial proportion of in-sample data is roughly equivalent to that of out-of-sample data (12

years v.s. 15 years). We fix the length of validation sample at two years. In other words,

our testing sample starts from July 2004.

Since many machine learning algorithms are computationally intensive, we avoid tuning

hyperparameters every month. Instead, we assume that the optimal hyperparameters for

a model are stable in a short period and re-tune these hyperparameters every year. Each

time we re-tune, we increase the training sample by one year, and maintain the same size

of the validation sample, but roll it 12 months forward. As most of our bond characteristics

are updated monthly, we do refit our model each month using the hyperparameters most

recently tuned to incorporate new information.

For example, at the end of 2004:06, we split the sample into 10 years of training sample

(1992:07-2002:06), and 2 years of validation sample (2002:07-2004:06) to choose the opti-

mal hyperparameters and make out-of-sample predictions for 2004:07. While at the end of

2004:07, we just adopt the hyperparameters tuned at the end of 2004:06 to refit our model

and predict one-month-ahead corporate bond returns. Note that since there is no need to val-

idate the hyperparameters, the whole sample period (2002:07-2004:07) is used as the training

sample. This set of hyperparameters is used to refit the model each month until the end of

2005:06, when we validate the hyperparameters using the training sample (1992:07-2003:06)

and the validation sample (2003:07-2005:06). This estimation strategy can be viewed as a

combination of those used by Gu et al. (2020) and Bianchi et al. (2021), given the trade-off

between computational burdens and timely information updating.3

3Gu et al. (2020) periodically refit the model once per year and make out-of-sample predictions using
the same fitted model over the subsequent year, while Bianchi et al. (2021) recursively refit the model every
month.
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3.2 Performance Evaluation

The predictive performance of machine learning model Mk for bond i is evaluated by the

out-of-sample R-squared

R2
OOS = 1−

∑
(rxi,t − r̂xi,k,t)

2∑
rx2

i,t

, (3)

where rxi,s denotes the excess return on bond i at time t, and r̂xi,k,t is the return forecast

produced by model Mk. Note that the denominator in Eq. (3) is the sum of squared excess

bond returns without demeaning (Gu et al., 2020). R2
OOS measures the reduction in the

mean squared forecast error compared to a naive benchmark of zero excess returns for all

convertible bonds. A positive R2
OOS indicates that the machine learning forecast model

outperforms the naive benchmark.

A natural benchmark for the evaluation of regression-based predictions is the yield-

implied expected bond returns (Campello et al., 2008; de Jong and Driessen, 2012; Bongaerts

et al., 2017; van Zundert and Driessen, 2022).4 We repeat the exercise of return prediction

by replacing r̂x with r̃x in Eq. (2) and report the estimated R2
OOS.

Next, to obtain statistical inference, we compare the forecasts of two models in terms

of out-of-sample performance, following Diebold and Mariano (1995). The test statistic is

defined as:

DM12 =
d
12

σ̂12
d

, (4)

where d
12

and σ̂12
d

denote the time-series average and Newey and West (1987) standard errors

of the mean difference between squared forecast errors d12:

d12t+1 =
1

n3,t+1

n3,t+1∑
t=1

((ê
(1)
i,t+1)

2 − (ê
(2)
i,t+1)

2), (5)

where ê
(1)
i,t+1 and ê

(2)
i,t+1 denote the prediction errors for bond i at time t using models 1 and

2, respectively, and n3,t+1 is the number of bonds in the testing sample.

4Bongaerts et al. (2011) employ a similar method to derive an estimate of expected excess returns on
CDS portfolios.
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4 Bond Return Predictability

In this section, we examine the predictability of corporate bond returns with various ML

methods and focus on the relative performance of the carry-augmented approach. Sections

4.1 and 4.2 present the forecasting accuracy in samples of listed and unlisted bond issuers,

respectively. Section 4.3 considers another dimension and reports the subsample analysis on

investment-grade and high-yield bonds. Section 4.4 discuss the improvement of the carry-

augmented approach from an econometrical point of view. Section 4.5 assesses variable

importance in each machine learning algorithm.

4.1 Bonds Issued by Listed Firms

Panel A of Table 2 presents the monthly R2
OOS in percentages using the 60 bond charac-

teristics and 153 stock characteristics as covariates and covering the entire sample of public

corporate bonds. Results in the first row show the bond excess return predictability. We

find that all machine learning algorithms show some degree of predictive power for individ-

ual bond returns, with the R2
OOS ranging from 1.16% (PCR) to 2.24% (Enet). The forecast

combination model (Comb), which averages different types of machine learning forecasts,

also performs well and results in an R2
OOS value of 2.29%. The standard linear regression

estimated via ordinary least squares (OLS) deliver disastrous performance, with the R2
OOS

of 2.14%. This result echoes Lewellen (2015)’s finding from the stock market: return pre-

dictors that have been screened by the empirical literature likely to contain independent

determinants of expected returns, which have substantial predictive power even in the OLS

setting.

[Insert Table 2 Here]

However, the last column shows that the superior performance of machine learning tech-

niques is eclipsed by a simple benchmark—yield-implied expected bond returns. Indeed,

the R2
OOS generated by r̃x (2.95%) is much greater than that of the best-performing ma-

chine learning model. Note that our yield-based estimate does not contain the “roll down”

component, so it is even expected to underpredict the realized bond returns.
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Next, we decompose bond total returns into carry and price returns, and predict price

returns using machine learning methods. We compare the sum of carry parts and predicted

price returns with bond total returns. The results in the second row in Panel A reveal that

the predictive performance is much better than that with bond returns for each machine

learning algorithm. The R2
OOS of all machine learning methods ranges from 2.73% (PCR)

to 3.68% (Enet), which is 1.26-1.53% higher than that for predicting for corporate bond

returns in the first row. The forecast combination model (Comb) also generates an R2
OOS

value of 3.63%. Almost all methods have better predictive performance than the simple

benchmark—yield-implied expected bond returns (R2
OOS=2.95%).

4.2 Bonds Issued by Unlisted Firms

In Panel B of Table 2, we only consider the 60 bond characteristics into machine learning

models. Accordingly, the sample is confined to private bonds. We find that excluding stock

characteristics to some extent downgrades the out-of-sample performance. For example, for

predicting bond excess returns, the R2
OOS of Enet decreases from 2.24% to 1.78%, and that of

Combination decreases from 2.29% to 2.05%. The yield-based estimates generate an R2
OOS

of 3.61% over the entire private firm sample, which outperforms machine learning methods.

In terms of predicting prices returns, we find that the predictive performance is much

superior than that with bond returns for each machine learning algorithm. The R2
OOS of

all machine learning methods ranges from 3.21% (XGBoost) to 3.54% (OLS), which is 1.23-

1.81% higher than that for predicting for corporate bond returns. It is comparable to the

out-of-sample performance of price return prediction in public firms. The forecast combi-

nation model (Comb) also generates an R2
OOS value of 3.48%. All methods have inferior

predictive performance than the simple benchmark—yield-implied expected bond returns,

with an R2
OOS value of 3.61%.

In summary, when predicting prices returns among both public and private firms, we

find that all machine learning algorithms have better predictive performance than that for

predicting bond total returns. The simple benchmark—yield-implied expected bond returns
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yields better predictive performance than machine learning models except for predicting

price returns among public firms.

4.3 Investment-Grade v.s. High-Yield Bonds

In addition to the full sample of bonds, we examine the predictive performance for investment-

grade and high-yield bonds separately, and report the corresponding results in Table 3. We

obtain similar patterns in R2
OOS for investment-grade and high-yield bonds for all machine

learning models. For investment-grade bonds in Panel A, when benchmarked against the

yield-implied expected returns to predict bond total returns, all machine learning methods

generally underperform. For predicting price returns, the yield-implied expected returns

achieve the highest out-of-sample R2 for private firms, compared with all machine learnings

methods.

[Insert Table 3 Here]

Regarding high-yield bonds in Panel B, penalized regression models and the forecast com-

bination model achieve higher R2
OOS values compared with other machine learning methods.

Their predictive performance is inferior to that of the benchmark for predicting bond ex-

cess returns, but superior than the benchmark—yield-implied expected bond returns for

predicting bond price returns.

Overall, we find that machine learning is dominated by the yield-based benchmark when

predicting excess returns in both the investment-grade and high-yield bond subsamples, but

shows superiority in forecasting price returns.

4.4 Forecast Comparison

In addition to quantitatively comparing the predictive performance of machine learning

models in Table 2, we adopt the Diebold and Mariano (1995) tests to iteratively compare

the forecasts of two competing models, following Eq. (4). Under the null hypothesis that

there is no difference between the two models, the Diebold-Mariano statistics follow a N(0,1)
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distribution. The magnitudes of the test statistics correspond to p-values in the same way

as t-statistics in regression analysis.

We present the results in Table 4, which reveal two interesting findings. First, in the first

row, we compare whether price return prediction based on all machine learning methods

outperforms the excess return prediction with all machine learning methods. The positive

Diebold-Mariano statistics reveal that price return prediction outperforms the excess return

prediction with all machine learning methods. The statistics are significant for private firms

in Panel B. Second, in the second row, we compare whether yield-implied expected returns

outperform machine learning predicted returns when predicting excess returns. We find that

yield-implied expected returns outperform machine learning predicted returns. The statistics

are significant for private firms in Panel B.

[Insert Table 4 Here]

4.5 Which Predictors Matter?

Given the large number of predictors, we next investigate which predictors are more impor-

tant. We adopt the reduction in panel predictive R2 to gauge variable importance, following

Gu et al. (2020). Figures 1 and 2 illustrate the overall importance of all predictors based

on the pooled full sample. We calculate the reduction in R2 from setting all values of a

given predictor to zero within each training sample and average these into a single impor-

tance measure for each predictor. We order predictors along the vertical axis by calculating

the sum of the ranks of R2-based variable importance across different models and sorting

them from highest to lowest. This ordering reflects the overall contribution of a predictor

to all models. Each column corresponds to a prediction model. The color gradient within

each column indicates the model-specific ranking of predictors from most to least important

(darkest to lightest).

[Insert Figures 1 and 2 Here]

Regarding overall variable importance ranks, machine learning models indentify short

term reversal, relative value, and downside risk as key bond characteristics, when predicting
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excess returns of public bonds. Equity characteristics, such as asset turnover, book to market

and firm leverage are also important predictors, which indicates the integration between the

stock and bond markets. Similar patterns are observed for predicting price returns. In the

case of private bonds, we find that reversals, duration, downside risk and illiquidity are the

most important predictors.

5 Economic Values

Our assessment of prediction performance in Section 4 is entirely statistical. This raises the

question of whether the positive out-of-sample R2 statistics is economically meaningful for

investors. This section addresses this questions and, especially, examines if machine learning

forecasts become superior to yield-based ones once we consider economic gains. In Section

5.1, we form bottom-up forecasts for prespecified portfolios and evaluate their economic

values with a market timing trading strategy. Section 5.2 focuses on long-short portfolios

based on different types of return forecasts and highlights the impact of trading costs on

their actual performance.

5.1 Asset Allocation with Prespecified Portfolios

Compared to individual bond issues, bond portfolios is likely to be of broader economic

interest as they represent the risky-asset savings vehicles most commonly held by investors

in the corporate bond market. Therefore, we build bottom-up return forecasts by aggregating

machine learning forecasts into prespecified portfolios. We consider the 12 double-sorted,

monthly-rebalanced portfolios. Specifically, individual bonds are firstly grouped into 16

rating categories: AA+ (including AAA and AA), A, BBB, and speculative grades (BB and

below). And bonds in each rating category are further assigned one of three maturity groups:

short(< 5 years), intermediate (5-10 years), and long (> 10 years). Portfolio returns are

value-weighted average returns of bonds in each portfolio. These rating-maturity portfolios

are deeply rooted in the real corporate bond market, as many bond market index families

design their subindices in this way. For instance, ICE BofA fixed income indices include ones
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like “10+ Year BBB US Corporate Index”, and Barclays has a similar one termed “Long

Baa US Corporate Total Return Index”. Similarly, many bond mutual funds and ETFs have

restrictions on their investment from a rating and/or duration perspective (e.g., PIA BBB

Bond Fund and Vanguard Intermediate Term Corporate Bond ETF).

Before proceeding to the economic gains associated with various portfolio return forecasts,

we examine their accuracy as it could markedly differ from the results of security-level

forecasting. As discussed in Gu et al. (2020), the distribution of portfolio returns is sensitive

to dependence among individual security returns. As such, some components of security-

level forecasting errors tend to be cancelled out at the portfolio level, while other components

might be amplified.

Results in Figures 3 and 4 indicate that machine learning methods generate positive

out-of-sample R2s for most rating-maturity portfolios among public and private firms, re-

spectively. When predicting bond excess returns among public firms in Panel A of Figure 3.

Machine learning methods are outperformed by the yield-implied expected bond returns

for high-yield bonds, especially for short-term bonds. As discussed in Section 4, corporate

bonds with lower credit ratings are conceptually closer to defaultable bonds, and short ma-

turities make the bias of yield-implied expected returns less severe. On the other hand, the

advantage of machine learning emerges in high-yield grades, which is also consistent with

the findings of security-level forecasts. When predicting price returns among public firms in

Panel B, both machine learning and the yield-implied expected bond returns generate the

highest out-of-sample R2s for high-yield bonds, especially for short-term bonds.

[Insert Figures 3 and 4 Here]

For private firms in Figure 4, we find that the yield-implied expected bond returns for A-

rated and high-yield bonds, especially for short-term bonds, outperform the machine learning

methods, when predicting excess returns. The machine learning methods and the benchmark

are comparable and generate the best performance for A-rated and high-yield bonds, espe-

cially for short-term bonds among private firms

Compared to the statistical significance of portfolio return predictability, we are more

interested in its economic values. To this end, we follow Campbell and Thompson (2008)
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by evaluating trading strategies that time each prespecified portfolio with machine learning

forecasts. Specifically, we consider a mean-variance investor who selects a particular rating-

maturity portfolio along with a risk-free asset. It follows that the optimal weight on the

prespecified portfolio with machine learning method Mk is given by

wk,t =
EMk

t (xrt+1)

γEt

(
xrt+1 − EMk

t (xrt+1)
)2 , (6)

where γ denotes the coefficient of relative risk aversion. To proxy for the conditional variance

in Eq. (6), we employ a rolling sample variance estimator as in Thornton and Valente (2012).

With the estimated optimal weight on the risky bond portfolio, we compute the realized

utility for Mk and benchmark it against the yield-based return forecasts.

To test whether the welfare gains brought about by Mk are significantly greater than the

benchmark, we conduct a variant of Diebold and Mariano (1995) test as proposed by Bianchi

et al. (2021).5 To be more specific, we calculate the certainty equivalent return (CER) values

for each month in the out-of-sample period and then estimate the following regression

uk,t − uY,t = ν + εt, (7)

where uk,t and uY,t represent the realized utilities from investing with Mk-based and yield-

based return forecasts, respectively. This asset allocation exercise is rather similar to out-

of-sample tests of equal forecast accuracy and encompassing, except that the loss function

is not directly based on forecast errors but on the mean-variance utility.

Figures 5 and 6 present the CER values (in percentage points) with γ set to 5, a typical

value adopted by asset allocation studies in the fixed income field (Koijen et al., 2010;

Thornton and Valente, 2012). We also follow these studies by imposing short-sales and

borrowing constraints. Relative to the yield-implied benchmark, trading on machine learning

forecasts of bond excess return does not generate significant utility gains for the mean-

variance investor. However, trading on machine learning forecasts of bond price return plus

5Bianchi et al. (2021) propose using the test of Harvey et al. (1997) to account for autocorrelation in the
forecasting errors.
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carry does improve the investors’ utility, especially for high-yield bonds, where the CER

values are positive and significant at the 5% level for most of machine learning methods.

[Insert Figures 5 and 6 Here]

This finding is robust if we exclude equity characteristics and confine the sample to

private firms. For most of machine learning models with price return as target, they perform

superior to the yield-implied expected bond returns, especially for intermediate and short

term high yield bonds.

5.2 Hedged Portfolio Returns and Trading Costs

Besides prespecified bond portfolios, we also construct long-short portfolios based on ma-

chine learning forecasts to assess their economic values from an alternative perspective.

For each machine learning method, we sort corporate bonds into deciles based on its re-

turn predictions and then form zero-net-investment portfolios that are long in the highest

expected-return bonds and short in the lowest ones. Table 5 displays the profitability of

these hedged portfolios.

[Insert Table 5 Here]

Panel A reports the results using all bond and stock characteristics in public firms. When

predicting bond excess returns, we find that penalized linear regression models deliver the

best performance among machine learning models, generating a spread in average monthly

returns of 0.82%-1.11% between the top and bottom deciles. Close to these best-performers

is the mean combination of individual model forecasts, with the average monthly return

up to 0.97%. All of the machine learning models lead to less gross profitability than the

yield-based benchmark. Panel B reports the results using all bond characteristics in private

firms, which display similar findings.

The superb performance of the yield-based benchmark portfolios is further demonstrated

by the risk-adjusted returns. That is, we estimate alphas from the time-series regressions

of portfolio returns on the corporate bond market factors. The alpha for penalized linear

regression models and the combination model ranges from 0.65% to 1% with both bond and
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stock characteristics and from 0.52% to 0.65% with only bond characteristics. Therefore,

standard risk factors cannot explain the gross investment gains from machine learning port-

folios, which is consistent with the findings of Feng et al. (2025). On the other hand, the

gross return on the benchmark portfolio is not absorbed by its exposures to common risk

factors. While the alpha is still significant, its magnitude shrinks to 0.85% per month with

both bond and stock characteristics and 0.76% per month with only bond characteristics.

This finding points to the efficiency of the corporate bond market, as the current yield seems

to already reflect compensations for various sources of risk.

Regarding predicting price returns, we find that penalized linear regression models deliver

the best performance among machine learning models. With both bond and stock charac-

teristics among public firms, the portfolio performance ranges between 1.27% and 1.74% per

month. It is higher than that for predicting excess returns and than the yield-based bench-

mark portfolio (1.38%). With only bond characteristics among private firms in Panel B,

the portfolio performance ranges between 1.03% and 1.32% per month, which is comparable

to the yield-based benchmark portfolio (1.22%). We have similar findings for risk-adjusted

returns.

The distinct impact of risk adjustments on hedge portfolio performance can also inferred

from cumulative portfolio returns presented in Panels A1 and B1 of Figures 7 and 8.6 The

machine learning portfolio and the benchmark portfolio generate comparable cumulative

returns over the 15-year period, whereas the latter suffers much larger losses during the

2008 financial crisis. It suggests that that bond yield already reflects compensations for

various sources of risk—market risk, default risk, downside risk, and liquidity risk—which

are particularly relevant in financial crisis. While our yield-based benchmark is adjusted for

expected default loss, there is a well-known, sizable wedge between physical and risk-neutral

expectations of default loss—which lies at the heart of the credit spread puzzle (Huang and

Huang, 2003)—and a large fraction of this wedge is associated with economic recessions

(Chen et al., 2009; Chen, 2010; Bhamra et al., 2010). As such, an adjustment for physical

default loss is clearly insufficient to remove the compensation for macroeconomic risks.

6For simplicity, we focus on the machine learning portfolio implied by forecast combination, as a balanced
choice between the gross return and (as will be discussed below) the return net of transactions costs.
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[Insert Figures 7 and 8 Here]

In the corporate bond market, trading costs are far from negligible when translating the-

oretical portfolio returns to real profitability. For this reason, we also report hedge portfolio

returns net of transaction costs in Table 5. Following Chordia et al. (2017), we compute the

portfolio-level cost as the product of the turnover rate and some measure of effective (frac-

tional) bid-ask spread. As shown by previous works (e.g., Bao et al. (2011) and (Dick-Nielsen

et al., 2012)), there is substantial temporal variations in bond-level transaction costs. To un-

dertake a more accurate assessment of the liquidity effect, we first use the bid-ask spread of

individual bonds to calculate the average transaction costs for each rating portfolios month

by month, and use the costs to proxy for transaction costs of a bond with corresponding

rating.

λt =
ξt
Nt

ΣNt
i=1ki,t,

where ξt denotes the month-t portfolio turnover, ki,t the security-level transaction cost, and

Nt the number of bonds in the portfolio in month t. The bid-ask spread is estimated by

Gibbs sampling of daily quotes following Hasbrouck (2009), which measures bond trading

cost well according to Schestag et al. (2016).

Results for predicting bond excess returns in column (3) of Panel A indicate that trading

on machine learning forecasts involves high portfolio turnover, ranging from 0.77 to 1.43.

The resultant trading costs overwhelm the significant gross returns on these hedge portfolios.

Seven of 9 machine learning portfolios have significantly positive returns net of trading costs,

with the raw returns ranging between 0 and 0.41% per month. The benchmark portfolio

outperforms all machine learning portfolios by a large margin, with the net return of 1.15%

and a turnover of 0.42.

The portfolio turnover decreases when equity characteristics are excluded into machine

learning models, as shown in Panel B. It results in a lower gap between the gross and

net returns. Indeed, seven machine learning portfolios maintain positive profitability, when

the trading cost is estimated using the Hasbrouck model. Consistent with the evidence in

Panel A, the composition of the benchmark portfolio is fairly stable over time, with the

average turnover of 0.42. Consequently, its net returns (1.15% per month) overwhelmingly
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predominate among all long-short portfolios.

When predicting price returns, we obtain similar findings. After considering transaction

costs, all machine learning portfolios become lower and remain positive returns, ranging

between 0.49% and 1.10% per month for both public and private firms. However, they

underperform the benchmark portfolio with the net return of 1.15% per month.

The impact of transaction costs on the investment gains is visualized by Panels A2 and

B2 of Figures 7 and 8, in which relative performance of machine learning portfolios and the

benchmark portfolio is overturned.

The evidence so far indicates that it is largely infeasible to exploit the profitability as-

sociated with these zero-net-investment portfolios, which is seriously undermined either by

risk adjustments (for the benchmark portfolios) or by market illiquidity (for machine learn-

ing portfolios). We further combine these economic forces by examining if these portfolios

generate significantly positive alphas net of trading costs. With the Hasbrouck measure

adjustment, only half of the machine learning hedge portfolios and yield-implied expected

returns yield significantly positive alphas. And both lose the significance when the Has-

brouck model is used to estimate transaction costs. Results among both private and public

firms for both predicting excess returns and price returns carry the same message. Overall,

our findings seem to support the notion that the corporate bond market is generally efficient

net of transaction costs.

6 Conclusion

The asset-pricing literature finds significant cross-sectional predictability in corporate bond

returns. This paper provides new evidence on their real-time predictability as uncovered

by machine learning models. With a comprehensive sample of more than 1.3 million U.S.

bond-month observations from 1992 to 2019, this study compares the out-of-sample predic-

tive power of machine learning algorithms and the yield implied expected returns based on

60 bond characteristics and 153 equity characteristics. It also decomposes bond excess re-

turns into carry parts and price returns, and predicts price returns and bond excess returns
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separately.

It documents that the out-of-sample performance for all machine learning methods for

predicting price returns is much better than that for predicting bond excess returns. How-

ever, we also find that the expected return estimates as derived from the current yield to

maturity appear to outperform machine learning characteristics-based forecasts, especially

for predicting bond excess returns.

Moreover, we construct long-short portfolios based on predicted returns. Only the yield-

based estimates of bond premium offer robust investment gains after accounting for exposures

to systematic risks and transaction costs. Our results suggest that the corporate bond

predictability is largely reconcilable with exposure to standard risk factors and friction-

induced mispricing.

For a practical perspective, our findings call for direct optimization of corporate bond

portfolios in practice. That is, the supervised learning approach as examined in this paper

essentially performs indirect optimization, which entails estimation of asset risk premiums

in the first step. We find that an accurate inference of expected bond returns does not

necessarily lead to sizable economic gains, highlighting the importance of directly learning

portfolio weights and allowing for flexible learning objectives (rather than prediction errors).

More importantly, the documented massive impact of transaction costs on investment points

to the necessity of taking the trading environment into account. Given these insights, rein-

forcement learning as arising in the literature appears a perfect recipe to fill these gaps (Cong

et al., 2021). We leave for future studies the potential improvement brought by reinforcement

learning in bond investment performance.
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Appendix A Bond Return Predictors

A.1 Corporate Bond Characteristics

For each issue in our sample, we consider 60 corporate characteristics as return predictors,

whose availability largely depends on the liquidity and age of the issue, as well as the status

of the issuer.

Table 1: Corporate Bond Characteristics

1. Credit rating 31. CHL
2. Duration, Gebhardt et al. (2005) 32. Stdev of CHL
3. Age, Israel et al. (2018) 33. Schultz High-low measure, Schultz (2000)
4. Maturity 34. BDJ
5. Bond size, Houweling and Van Zundert (2017) 35. EHP effective spread, Edwards et al. (2007)
6. 5% VaR, Bai et al. (2019) 36. ZTD
7. 10% VaR, Bai et al. (2019) 37. FHT liquidity measure, Fong et al. (2017)
8. 5% expected shortfall 38. Gibbs
9. 10% expected shortfall 39. Amihud LF, Amihud (2002)
10. Gamma LF, Bao et al. (2011) 40. Amihud Roll
11. Roll LF, Roll (1984) 41. Amihud Gibbs
12. Gamma HF, Bao et al. (2011) 42. Amihud Effective tick
13. Roll HF, Dick-Nielsen et al. (2012) 43. Amihud FHT
14. EffectiveTick HF 44. Amihud HLspread
15. Std EffectiveTick 45. Amihud CHL
16. EffectiveTick LF 46. Bond return variance, Bali et al. (2016)
17. Average bid-ask, Hong and Warga (2000) 47. Bond skewness
18. Stdev of average bid ask 48. Bond coskewness, Harvey and Siddique (2000)
19. Interquartile range (IQR), Han and Zhou (2007) 49. Bond idiosyncratic skewness, Boyer et al. (2010)
20. Stdev of IQR 50. Bond kurtosis
21. Round-trip transaction costs (RTC), Feldhutter
(2012)

51. VIX beta, Chung et al. (2019)

22. Stdev of RTC 52. Uncertainty beta, Bali et al. (2021)
23. Amihud HF 53. Bond market beta
24. Stdev of Amihud measure 54. Default beta, Chung et al. (2019)
25. Pastor and Stambaugh’s liquidity measure, Pas-
tor and Stambaugh (2003)

55. Term beta, Chung et al. (2019)

26. Hasbrouck Lambda, Hasbrouck (2009) 56. 6-month momentum, Jostova et al. (2013)
27. Dispersion 57. 11-month momentum
28. Stdev of Dispersion 58. Long-term reversal, Bali et al. (2021b)
29. High-Low spread, Corwin and Schultz (2012) 59. Short-term reversal, Bai et al. (2019)
30. Stdev of High-Low spread 60. Relative value

This table lists the bond characteristics.

1. Credit rating: We retrieve the information of credit rating from Mergent FISD. If a

issue has credit ratings from multiple agencies at any point in time, we take the first

available rating in the following sequence: S&P, Moody’s, and Fitch (Dick-Nielsen
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et al., 2012). We convert categorical ratings into conventional numerical scores, where

1 refers to an AAA rating and 2 refers to a AA+ rating. Higher numerical score means

higher credit risk. Numerical ratings of 10 or below (BBB- or better) are considered

investment grade, and ratings of 11 or higher (BB + or worse) are labeled high yield.

2. Duration: The Macaulay duration is a popular measure of term or maturity risk of

a bond. We use the modified duration, namely the Macaulay duration divided by one

plus the yield to maturity, as our proxy of term risk (Gebhardt et al., 2005a).

3. Age: Bond age since the first issuance, in the number of years.

4. Maturity: The number of years to maturity.

5. Bond size: In the corporate bond literature, Size is typically measured with a bond is-

suer’s total public debt instead of the outstanding amount of individual bonds. Houwel-

ing and Van Zundert (2017) find that bonds issued by small companies carry a positive

premium. We define a bond issuer’s Size in a given month as the sum of the market

value weights of all its bonds in our sample.

6. The 5% VaR: Following Bai et al. (2019), we measure downside risk of corporate

bonds using VaR, which determines how much the value of an asset could decline over

a given period of time with a given probability as a result of changes in market rates or

prices. Our proxy for downside risk, 5% Value-at-Risk (VaR5), is based on the lower

tail of the empirical return distribution, that is, the second lowest monthly return

observation over the past 36 months. We then multiply the original measure by -1 for

convenience of interpretation.

7. The 10% VaR: This measure is defined as the fourth lowest monthly return ob-

servation over the past 36 months. We then multiply the original measure by -1 for

convenience of interpretation.

8. The 5% Expected Shortfall: An alternative measure of downside risk, ”expected

shortfall,” is defined as the conditional expectation of loss given that the loss is beyond

the VaR level. In our empirical analyses, we use the 5% expected shortfall (ES5)

defined as the average of the two lowest monthly return observations over the past 36

months (beyond the 5% VaR threshold).

9. The 10% Expected Shortfall: An alternative measure of downside risk, ”expected

shortfall,” is defined as the conditional expectation of loss given that the loss is beyond

the VaR level. In our empirical analyses, we use the 10% expected shortfall (ES10)
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defined as the average of the four lowest monthly return observations over the past 36

months (beyond the 10% VaR threshold).

10. Gamma LF: We follow Bao et al. (2011) to construct the measure, which aims to

extract the transitory component from bond price. Specifically, let ∆pitd = pitd−pitd−1

be the log price change for bond i on day d of month t. Then, γ is defined as

γ = −Covt(∆pid,∆pi,d+1) (8)

11. Roll LF: As an alternative measure of bond-level illiquidity using daily bond returns,

the Roll (1984) measure is defined as,

Roll =

0 otherwise,

2
√

−cov(ri,d, ri,d−1) if cov(ri,d, ri,d−1) < 0
(9)

where rd = Pd/Pd−1 − 1 denotes the total return on day d.

12. Gamma HF: The intraday version of Gamma.

13. Roll HF: The intraday version of Roll measure of illiquidity.

14. Effective Tick HF

15. Stdev effective Tick

16. Effective Tick LF

17. Average bid ask: Following Hong and Warga (2000) and Chakravarty and Sarkar

(2003), we use the difference between the average customer buy and the average cus-

tomer sell price on each day to quantify transaction costs

AvgBidAsk =
PBuy
t − P Sell

t

0.5 · (PBuy
t + P Sell

t )
(10)

where P
Buy/Sell
t is the average price of all customer buy/sell trades on day t. We

calculate AvgBidAsk for each day on which there is at least one buy and one sell trade

and use the monthly mean as a monthly transaction cost measure.

18. Stdev of average buy and sell
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19. Interquartile range (IQR): Han and Zhou (2007) and Pu (2009) use the interquartile

range of trade prices as a bid-ask spread estimator. They divide the difference between

the 75th percentile P 75th
t and the 25th percentile P 25th

t of intraday trade prices on day

t by the average trade price P̄t of that day:

IQR =
P 75th
t − P 25th

t

P̄t

. (11)

We calculate IQR for each day that has at least three observations and define the

monthly measure as the mean of the daily measures.

20. Stdev IQR

21. Round-trip transaction costs (RTC): Following Feldhutter (2012), we aggregate

all trades per bond with the same volumes that occur within a 15-minute time window

to a round-trip transaction. We then compute the estimator for round-trip transaction

costs as the doubled difference between the lowest and highest trade price for each

round-trip transaction. To obtain a relative spread proxy, we divide the round-trip

transaction cost estimator by the mean of the maximum and the minimum price. A

bond’s monthly round-trip measure is then obtained by averaging over all round-trip

trades in a month.

22. Stdev RTC

23. Amihud HF: The intraday version of Amihud illiquidity measure.

24. Stdev of Amihud: The standard deviation of the daily Amihud measure within a

month.

25. Pastor and Stambaugh’s liquidity measure: Pastor and Stambaugh (2003) de-

velop a measure for price impact based on price reversals for the equity market. It is

given by the estimator for γ in the following regression:

ret+1 = θ +Θrt + γsign(ret )Qt + et, (12)

where ret is the security’s excess return over a market index return, rt is the security’s

return and Qt is the trading volume at day t. For corporate bond market index, we use

Merrill Lynch aggregate corproate bond index. γ should be negative and a larger price

impact leads to a larger absolute value. As liquidity measures generally assign larger

(positive) values to more illiquid bonds, we define γPS = −γ expect it to be positively

correlated with the other liquidity measures.
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26. Hasbrouck Lambda: Hasbrouck (2009) proposes Lambda as a high-frequency price

impact measure for equities. Lambda is estimated in the regression,

rτ = λ · sign(Qτ ) ·
√

|Qτ |+ ϵτ (13)

where rτ is the stock’s return and Qτ is the signed traded dollar volume within the

five minute period τ . Following Hasbrouck (2009) and Schestag, Schuster, and Uhrig-

Homburg (2016), we take into account the effects of transaction costs on small trades

versus large trades (Edwards, Harris, and Piwowar, 2007) and run the adjusted regres-

sion,

rτ = α ·Di + λ ·
√

|Qτ |+ ϵτ (14)

where λ is estimated in the equation above excluding all overnight returns and Di is

an indicator variable of trades defined as the following,

Di =


1 if trade i is a buy,

0 if trade i is an interdealer trade,

−1 if trade i is a sell

(15)

27. Dispersion

28. Stdev dsipersion

29. High-low spread estimator: Following Corwin and Schultz (2012), we use the ratio

between the daily high and low prices on consecutive days to approximate bid-ask

spreads. With such motivation, their effective spread proxy is defined as

PHighLow =
2(eα − 1)

1 + eα
,

α =

√
β

3− 2
√
2
−
√

γ

3− 2
√
2
,

β =
1∑

j=0

(ln(Ht+j))
2,

γ = (ln(
Ht+1

Lt+1

))2.

Ht(Lt) is the highest (lowest) transaction price at day t, andHt,t+1(Lt,t+1) is the highest

(lowest) price on two consecutive days t and t + 1. Again, we take the mean of the

daily values in a month to get a monthly spread proxy for each bond.
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30. Stdev of High-Low spread:

31. CHL

32. Stdev of CHL

33. Schultz High-low measure: Schultz (2000) proposes the liquidity measure.

Schultz =

√
1
n

∑n
i=1(Hi − Li)2

1
n

∑n
i=1(Pi)

(16)

34. BDJ

35. EHP effective spread: Edwards et al. (2007)

Effective spread = 2 ∗ |Tradeprice−Midpointprice|
Midpointprice

(17)

36. ZTD:

37. FHT liquidity measure: Fong et al. (2017) propose a new bid-ask spread proxy

based on the zeros measure in Lesmond et al. (1999). In their framework, symmetric

transaction costs of S/2 leads to observed returns of

R =


R∗ + S

2
if R∗ < −S

2
,

0 if − S
2
≤ R∗ < S

2
,

R∗ − S
2

if R∗ ≥ S
2

(18)

where R∗ is the unobserved true value return, which they assume to be normally

distributed with mean zero and variance σ2. Hence, they equate the theoretical prob-

ability of a zero return with its empirical frequency, measured via PZeros. Solving for

the spread S, they get

PFHT = S · 2 · σ · Φ−1

(
1 + PZeros

2

)
, (19)

38. Gibbs

39. Amihud illiquidity LF: Following Amihud (2002), the measure is motivated to cap-
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ture the price impact and is defined as,

Amihud =
1

N

N∑
d=1

(
|ri,d|
Qi,d

), (20)

40. Amihud Roll

41. Amihud Gibbs

42. Amihud effective tick

43. Amihud FHT

44. Amihud HL spread

45. Amihud CHL

46. Short-term reversal: ? find that the past month’s bond return has a significantly

negative coefficient in predicting this month return.

47. Bond variance: the variance of bond returns using a 36-month rolling window for

each bond in our sample.

48. Skewness: Similar to the construction of variance, skewness is estimated using a

36-month rolling window for each bond in our sample.

SKEWi,t =
1

n

n∑
t=1

(
Ri,t − R̄i

σi,t

)3, (21)

49. Co-skewness: Harvey and Siddique (2000), Mitton and Vorkink (2007), and Boyer,

Mitton, and Vorkink (2010) provide empirical support for the three-moment asset pric-

ing models that stocks with high co-skewness, high idiosyncratic skewness, and high

expected skewness have low subsequent returns. Following the aforementioned studies,

we decompose total skewness into two components; systematic skewness and idiosyn-

cratic skewness, which are estimated based on the following time-series regression for

each bond using a 36-month rolling window:

Ri,t = αi + βiRm,t + γiR
2
m,t + ϵi,t, (22)

where Ri,t is the excess return of bond i in month t, Rm,t is the excess return on the

bond market portfolio, γi is the systematic skewness (co-skewness) of bond i.
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50. Idiosyncratic skewness: The idiosyncratic skewness of bond i is defined as the

skewness of the residuals in co-skewness regression equation.

51. Kurtosis: Similar to the construction of volatility and skewness, kurtosis is estimated

using a 36-month rolling window for each bond in our sample.

KURTi,t =
1

n

n∑
t=1

(
Ri,t − R̄i

σi,t

)4 − 3, (23)

52. VIX beta: Following Chung et al. (2019), we estimate the following bond-level re-

gression

Ri,t = αi+β1,iMKTt+β2,iSMBt+β3,iHMLt+β4,iDEFt+β5,iTERMt+β6,iδV IXt+ϵi,t,

(24)

whereRi,t is the excess return of bond i in month t, andMKTt, SMBt, HMLt, DEFt, TERMt,

and δV IXt denote the aggregate corporate bond market, the size factor, the book-to-

market factor, the default factor, the term factor, and the market volatility risk factor,

respectively.

53. Macroeconomic uncertainty beta: Following Bali et al. (2021b), for each bond-

month in our sample, we estimate the uncertainty beta from monthly rolling regressions

of excess bond returns on the change in the economic uncertainty index (δ UNC) and

the excess bond market returns (MKT), using the past 24 to 36 months of data (as

available):

54. Bond market beta: We estimate the bond market beta for each bond from the time-

series regressions of individual bond excess returns on the bond market excess returns

(MKTBond) using a 36-month rolling window. We compute the bond market excess

return (MKTBond) as the value-weighted average returns of all corporate bonds in our

sample minus the one-month Treasury-bill rate.

55. Default beta: We estimate the default beta for each bond from the time-series regres-

sions of individual bond excess returns on the bond market excess returns (MKTBond)

and the default factor using a 36-month rolling window. Following Fama and French

(1993), the default factor (DEF) is defined as the difference between the return on a

market portfolio of long-term corporate bonds (the composite portfolio on the corpo-

rate bond module of Ibbotson Associates) and the long-term government bond return.
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56. Term beta: We estimate the default beta for each bond from the time-series regres-

sions of individual bond excess returns on the bond market excess returns (MKTBond)

and the term factor using a 36-month rolling window. Following Fama and French

(1993), the term factor (TERM) is defined as the difference between the monthly long-

term government bond return (from Ibbotson Associates) and the one-month Treasury

bill rate.

57. Bond 6-month momentum: Jostova et al. (2013) find that winners in the corporate

bond market over the past six months outperform losers by 37 basis points (bps) per

month. Accordingly, we define 6-month bond momentum as the cumulative 6-month

return on the corporate bond skipping the most recent month.

58. Bond 11-month momentum: We define 11-month bond momentum as the cumu-

lative 11-month return on the corporate bond skipping the most recent month.

59. Long-term reversal: Bali et al. (2021b) show that contrarian strategies based on

long-term returns are statistically and economically profitable in the corporate bond

market. Following their definition, we construct long-term bond reversal as cumulative

returns from month t− 48 to t− 13.

60. Idiosyncratic bond volatility: Chung et al. (2019) investigate the cross-sectional re-

lation between expected bond returns and idiosyncratic volatility. We follow their

approach by measuring idiosyncratic volatility by the standard deviation of return

residuals from a factor model, which includes Fama and French (1993) five factors as

well as VIX.

61. The Hasbrouck measure for bid-ask spreads: Hasbrouck (2009) develops a Gibbs sam-

pler estimation of the extended Roll model,

rt = c ·∆Dt + βrMt + ϵt, (25)

where Dt is a sell side indicator, c is half of the effective bid-ask spread, and rMt denotes

the market return on day t. By making inference of the latent Dt with Gibbs sampling,

this estimator overcomes the negative spread estimates. We estimate Eq. (26) on a

monthly basis and define Hasbrouck = 2ĉ.

62. Bloomberg quoted bid-ask spreads: We use quoted bid-ask spreads from the Bloomberg

Generic Quote (BGN). Let Bt and At be the bid and ask quote for a given bond and
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day t .We get our daily relative spread estimates

BGNt =
2(At −Bt)

Bt + At

(26)

63. The LOTmeasure and the percentage of zero returns: Lesmond et al. (1999) develop an

effective spread estimator (LOT) based on the idea that an observed return is different

from zero only if the true return exceeds the trading costs; Chen et al. (2007) apply

this estimator to measuring corporate bond market illiquidity. The key assumption

underlying this estimator is that the observed bond return rt has the following relation

with the unobserved “true return” r∗t ,

rt =


r∗t − α1 if r∗t < α1

0 if α1 < r∗t < α2

r∗t − α2 if r∗t > α2

, (27)

where α1 denotes the percentage transaction cost of selling the bond and α2 the per-

centage transaction cost of buying it. Following the original LOT procedures, we

impose a one-factor structure on r∗t

r∗t − rft = β(rMt − rft) + ϵt, ϵt ∼ N(0, σ),

and estimate model parameters {α1, α2, β, σ} with a maximum likelihood estimator.7

It follows that the measure for effective bid-ask spread is given by

LOT = α2 − α1.

As discussed in Chen et al. (2007), a closely related measure is Percentage Zeros (ZRD),

which denotes the proportion of days observing a zero return in the month.

64. Equity-Debt-Spread: Correia et al. (2012) define value signals as

CRVi,t = C̃Si,t − CSi,t,

where C̃Si and CSi denote the modelled and observed yield spread of bond i, and

the former is calculated with structural-model-implied default probability. Since C̃Si

7Regarding the definition of three different regions in the likelihood function, we follow Chen et al. (2007)
by breaking out the three regions solely based on the observed bond returns. It corresponds to the “LOT
Y-split” measure as defined in Goyenko et al. (2009).
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is estimated with pricing information in the equity market, CRV is indeed closely

related to the debt-equity-spread as studied by Chen et al. (2025). We adopt their

terminology and label this covariate as equity-debt-spread.

65. Relative value: The relative value is defined as the difference between the quote yield

and the fair value yield of a bond. The fair value yield is the fitted yield implied by

issuer-specifc yield curves, which are constructed by the Nelson-Siegel model exploiting

the price information of bonds issued by similar firms. Specifically, the yield curve of

a firm is modelled as

yit(τ) = f 1(Xit) +
1− e−λτ

λτ
f 2(Xit) + (

1− e−λτ

λτ
− e−λτ)f 3(Xit)

where Xit is firm characteristics, τ is the maturity, and f 1, f 2, f 3 are the level, slope

and curvature factors in the Nelson-Siegel model. The function forms of three factors

are estimated to minimize pricing error via kernel smoothing.
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A.2 Equity Characteristics

Table 2: Stock Characteristics

Accruals

1. Total accruals Richardson et al. (2005)
2. Change in current operating working capital Richardson et al. (2005)
3. Operating accruals Sloan (1996)
4. Percent operating accruals Hafzalla et al. (2011)
5. Percent total accruals Hafzalla et al. (2011)
6. Years 16-20 lagged returns, nonannual Heston and Sadka (2008)

Debt issuance

7. Abnormal corporate investment Titman et al. (2004)
8. Growth in book debt (3 years) Lyandres et al. (2008)
9. Change in financial liabilities Richardson et al. (2005)
10. Change in noncurrenct operating liabilities Richardson et al. (2005)
11. Change in net financial assets Richardson et al. (2005)
12. Earnings persistence Francis et al. (2004)
13. Net operating assets Hirshleifer et al. (2004)

Investment

14. Liquidity of book assets Ortiz-Molina and Phillips (2014)
15. Asset growth Cooper et al. (2008)
16. CAPEX growth (1 year) Xie (2001)
17. CAPEX growth (2 years) Anderson and Garcia-Feijoo (2006)
18. CAPEX growth (3 years) Anderson and Garcia-Feijoo (2006)
19. Change in common equity Richardson et al. (2005)
20. Change in current operating assets Richardson et al. (2005)
21. Change in current operating liabilities Richardson et al. (2005)
22. Change in noncurrent operating assets Richardson et al. (2005)
23. Change in net noncurrent operating assets Richardson et al. (2005)
24. Hiring rate Belo et al. (2014)
25. Inventory growth Belo and Lin (2012)
26. Inventory change Thomas and Zhang (2002)
27. Change in long-term net operating assets Fairfield et al. (2003)
28. Mispricing factor: Management Stambaugh and Yuan (2017)
29. Change in net operating assets Hirshleifer et al. (2004)
30. Change in PPE and inventory Lyandres et al. (2008)
31. Long-term reversal De Bondt and Thaler (1985)
32. Sales growth (1 year) Lakonishok et al. (1994)
33. Sales growth (3 years) Lakonishok et al. (1994)
34. Sales growth (1 quarter)
35. Years 2-5 lagged returns, nonannual Heston and Sadka (2008)

This table lists the firm characteristics. We adopt 153 stock characteristics from Jensen et al. (2023).

42



Low leverage

36. Firm age Jiang et al. (2005)
37. Liquidity of market assets Ortiz-Molina and Phillips (2014)
38. Book leverage Fama and French (1992)
39. The high-low bid-ask spread Corwin and Schultz (2012)
40. Cash-to-assets Palazzo (2012)
41. Net debt-to-price Penman et al. (2007)
42. Earnings volatility Francis et al. (2004)
43. R&D-to-sales Chan et al. (2001)
44. R&D capital-to-book assets Li (2011)
45. Asset tangibility Hahn and Lee (2009)
46. Altman Z-score Dichev (1998)

Low risk

47. Market Beta Fama and MacBeth (1973)
48. Dimson Beta Dimson (1979)
49. Frazzini-Pedersen market beta Frazzini and Pedersen (2014)
50. Downside beta Ang et al. (2006)
51. Earnings variability Francis et al. (2004)
52. Idiosyncratic volatility from the CAPM (21 days)
53. Idiosyncratic volatility from the CAPM (252 days) Ali et al. (2003)
54. Idiosyncratic volatility from the Fama-French 3-factor model Ang et al. (2006)
55. Idiosyncratic volatility from the q-factor model
56. Return volatility Ang et al. (2006)
57. Cash flow volatility Huang (2009)
58. Maximum daily return Bali et al. (2011)
59. Highest 5 days of return Bali et al. (2017)
60. Years 6-10 lagged returns, nonannual Heston and Sadka (2008)
61. Share turnover Datar et al. (1998)
62. Number of zero trades with turnover as tiebreaker (1 month) Liu (2006)
63. Number of zero trades with turnover as tiebreaker (6 months) Liu (2006)
64. Number of zero trades with turnover as tiebreaker (12 month2) Liu (2006)

Momentum

65. Current price to high price over last year George and Hwang (2004)
66. Residual momentum t-6 to t-1 Blitz et al. (2011)
67. Residual momentum t-12 to t-1 Blitz et al. (2011)
68. Price momentum t-3 to t-1 Jegadeesh and Titman (1993)
69. Price momentum t-6 to t-1 Jegadeesh and Titman (1993)
70. Price momentum t-9 to t-1 Jegadeesh and Titman (1993)
71. Price momentum t-12 to t-1 Jegadeesh and Titman (1993)
72. Year 1-lagged returns, nonannual Heston and Sadka (2008)

Profit growth

73. Change sales minus change Inventory Abarbanell and Bushee (1998)
74. Change sales minus change receivables Abarbanell and Bushee (1998)
75. Change sales minus change SG&A Abarbanell and Bushee (1998)
76. Change in quarterly return on assets
77. Change in quarterly return on equity
78. Standardized earnings surprise Foster et al. (1984)
79. Change in operating cash flow to assets Bouchaud et al. (2019)
80. Price momentum t-12 to t-7 Novy-Marx (2012)
81. Labor force efficiency Abarbanell and Bushee (1998)
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82. Standardized revenue surprise Jegadeesh and Livnat (2006)
83. Year 1-lagged return, annual Heston and Sadka (2008)
84. Tax expense surprise Thomas and Zhang (2011)

Profitability

85. Coefficient of variation for dollar trading volume Chordia et al. (2001)
86. Coefficient of variation for share turnover Chordia et al. (2001)
87. Return on net operating assets Soliman (2008)
88. Profit margin Soliman (2008)
89. Pitroski F-score Pitroski (2000)
90. Return on equity Haugen and Baker (1996)
91. Quarterly return on equity Hou et al. (2015)
92. Ohlson O-score Dichev (1998)
93. Operating cash flow to assets Bouchaud et al. (2019)
94. Operating profits-to-book equity Fama and French (2015)
95. Operating profits-to-lagged book equity

Quality

96. Capital turnover Haugen and Baker (1996)
97. Cash-based operating profits-to-book assets
98. Cash-based operating profits-to-lagged book assets Ball et al. (2016)
99. Operating profits-to-book assets
100. Operating profits-to-lagged book assets Ball et al. (2016)
101. Change gross margin minus change sales Abarbanell and Bushee (1998)
102. Gross profits-to-assets Novy-Marx (2013)
103. Gross profits-to-lagged assets
104. Mispricing factor: Performance Stambaugh and Yuan (2017)
105. Number of consecutive quarters with earnings increases Barth et al. (1999)
106. Quarterly return on assets Balakrishnan et al. (2010)
107. Operating leverage Novy-Marx (2011)
108. Quality minus Junk: Composite Asness et al. (2019)
109. Quality minus Junk: Growth Asness et al. (2019)
110. Quality minus Junk: Profitability Asness et al. (2019)
111. Quality minus Junk: Safety Asness et al. (2019)
112. Assets turnover Soliman (2008)

Seasonality

113. Market correlation Asness et al. (2020)
114. Coskewness Harvey and Siddique (2000)
115. Net debt issuance Bradshaw et al. (2006)
116. Kaplan-Zingales index Lamont et al. (2001)
117. Change in long-term investments Richardson et al. (2005)
118. Change in short-term investments Richardson et al. (2005)
119. Taxable income-to-book income Lev and Nissim (2004)
120. Years 2-5 lagged returns, annual Heston and Sadka (2008)
121. Years 6-10 lagged returns, annual Heston and Sadka (2008)
122. Years 11-15 lagged returns, annual Heston and Sadka (2008)
123. Years 11-15 lagged returns, nonannual Heston and Sadka (2008)
124. Years 16-20 lagged returns, annual Heston and Sadka (2008)
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Size

125. Amihud measure Amihud (2002)
126. Dollar trading volume Brennan et al. (1998)
127. Market equity Banz (1981)
128. Price per share Miller and Scholes (1982)
129. R&D-to-market Chan et al. (2001)

Short-term reversal

130. Idiosyncratic skewness from the CAPM
131. Idiosyncratic skewness from the Fama-French 3-factor model Bali et al. (2016)
132. Idiosyncratic skewness from the q-factor model
133. Total skewness Bali et al. (2016)
134. Short-term reversal Jegadeesh (1990)
135. Highest 5 days of return scaled by volatility Asness et al. (2020)

Value

136. Assets-to-market Fama and French (1992)
137. Book-to-market equity Rosenberg et al. (1985)
138. Book-to-market enterprise value Penman et al. (2007)
139. Net stock issues Pontiff and Woodgate (2008)
140. Debt-to-market Bhandari (1988)
141. Dividend yield Litzenberger and Ramaswamy (1979)
142. Ebitda-to-market enterprise value Loughran and Wellman (2011)
143. Equity duration Dechow et al. (1999)
144. Net equity issuance Bradshaw et al. (2006)
145. Net total issuance Bradshaw et al. (2006)
146. Equity net payout Daniel and Titman (2006)
147. Net payout yield Boudoukh et al. (2007)
148. Payout yield Boudoukh et al. (2007)
149. Free cash flow-to-price Asness et al. (2019)
150. Intrinsic value-to-market Frankel and Lee (1998)
151. Earnings-to-price Basu (1983)
152. Operating cash flow-to-market Desai et al. (2004)
153. Sales-to-market Barbee Jr et al. (1996)
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Appendix B Machine Learning Methods

The excess return of a corporate bond i at time t+ 1 can be described as:

ri,t+1 = Et(ri,t+1) + ϵi,t+1 (28)

where

Et(ri,t+1) = g∗(zi,t) (29)

is the time t expected return that is represented by a flexible function g∗ of corporate bond

i’s P -dimensional characteristics zit = (zi,1,t, zi,2,t, · · · , zi,P,t)′. For ease of presentation, we

assume a balanced panel of corporate bonds. We index corporate bonds by i = 1, · · · , Nt

and months by t = 1, · · · , T , where N is the number of corporate bonds at time t.

B.1 Linear Regression

The least complex but straightforward method to approximate g∗ is a simple linear function

g∗(zi,t; θ) = z′i,tθ (30)

where θ = (θ1, · · · , θP ) are P -dimensional model parameters that can be estimated via the

ordinary least square (OLS). The objective function is

min
θ

L(θ) = 1

NT

N∑
i=1

T∑
t=1

(ri,t+1 − g(zi,t; θ))
2 (31)

Apart from considering the raw predictor variables as zi,t, we also cross-sectionally rank all

characteristics period-by-period and map these ranks into the interval [−1, 1] to mitigate the

effect of outliers.

B.2 Penalized Linear: LASSO, Ridge, and Elastic Net

When the number of predictors P approaches the number of observations T , the OLS esti-

mator often becomes inefficient or even inconsistent. A popular strategy to avoid overfitting

and improve the model interpretability is to append a penalty term to the objective function
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(31). In its general form, the objective function of a penalized regression can be written as

L(θ; ·) = L(θ) + ϕ(θ; ·) (32)

where ϕ(θ; ·) is the penalty function of θ.The constraints on the coefficients allow that the

coefficients of those less relevant variables are shrunk towards zero or exactly zero, which

improves the model’s out-of-sample stability.

A widely-used penalty function in the machine learning literature is the so-called “elastic

net” (Zou and Hastie, 2005), which takes the form

ϕ(θ;λ, ρ) = λ(1− ρ)
P∑

j=1

|θj|+
1

2
λρ

P∑
j=1

θ2j (33)

The elastic net involves two non-negative hyperparameters, λ and ρ. The ρ = 0 case corre-

sponds to LASSO where the penalty term is an l1 regularization and it sets some coefficients

exactly to zero. In this sense, it is a variable selection method that imposes model sparsity.

The ρ = 1 case corresponds to the ridge regression where the penalty term is an l2 regular-

ization. In contrast to LASSO, the ridge regression shrinks all coefficient estimates closer to

zero but never exactly imposes zeros. It is a shrinkage method that helps prevent coefficients

from becoming unduly large in magnitude. The elastic net is a combination of the two by

setting ρ between 0 and 1.

B.3 Dimension Reduction: PCR and PLS

Penalized linear models can produce suboptimal forecasts when predictors are highly corre-

lated. Dimension reduction techniques such as principal components regression (PCR) and

partial least squares help de-correlate highly dependent predictors and better isolate the

signal in predictors. The linear regression model can be written in matrix form as

R = Zθ + E (34)

where R is the NT ×1 vector of ri,t+1, Z is the NT ×P matrix of stacked predictors zi,t, and

E is a NT × 1 vector of residual ϵi,t+1. PCR and PLS aim to project the set of predictors

from dimension P to a much smaller number of K-dimensional space. The forecasting model

thus becomes

R = (ZΩK)θK + Ẽ (35)
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where ΩK is P × K matrix with columns w1, w2, · · · , wK . Each wj is the set of linear

combination weights used to create the jth predictive component.

PCR and PLS differ from their choices for the combination weights. PCR maximizes the

common variation across the predictors and the jth principal component solves

wj = argmaxV ar(Zw) s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, · · · , j − 1 (36)

The target variable is disgarded when extracting the principal components thus there is no

guarantee that they are the best latent factors for return prediction. In contrast, PLS links

the target variable to return predictors and seeks K linear combinations of Z that have

maximal predictive association with asset returns. The weights used to construct the jth

PLS component solve

wj = argmaxCov2(R,Zw) s.t. w′w = 1, Cov(Zw,Zwl) = 0, l = 1, 2, · · · , j−1 (37)

For both methods, K is a hyperparameter can be tuned from the validation sample.

Penalized linear regression and dimension reduction techniques do not account for non-

linear relations. To address this issue, we consider two classes of popular nonlinear methods:

regression trees and neural networks.

B.4 Regression Trees: XGBoost, Random Forests, and Extra-

Trees

Regression trees are a kind of simple yet powerful non-parametric machine learning methods.

A tree “grows” in a sequence of steps. At each step, a new “branch” splits the data leftover

from the preceding step into bins based on one of the predictors. This sequential branching

slices the input space into rectangular partition, and approximate g∗ with a simple model

(such as the average value of the outcome variable) in each partion.

Figure A1 exhibits an example of a regression tree with two predictors, “Duration”,

and “VaR”. The left panel describes how the tree assigns each observation in the sample

to a partition based on its predictor values. First, observations are splitted on Duration.

Observations with Duration above the breakpoint of 5 are assigned to Category 3. Corporate

bonds with shorter duration are further splitted according to their VaR. Observations with

shorter duration and VaR larger than 0.03 are partitioned into Category 1, while the rest go

into Category 2.
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Figure A1: Example of a regression tree

Mathematically, the prediction of a tree, T , with K “leaves” (terminal nodes), and depth

L can be formed as

g(zi,t; θ,K, L) =
K∑
k=1

θk1{zi,t∈Ck(K)} (38)

where Ck(L) is one of the K partion of the data, 1{·} is an indicator function, and θk is

simply the mean of outcome variables within the partition Ck.

A very large tree is prone to overfitting, while a small tree might not capture the important

predictors thus have weak prediction accuracy. Here, we consider three “ensemble” methods

that combine forecasts from many trees into a single one to improve the prediction accuracy

and mitigate overfitting.

The first one is boosting. After fitting a shallow tree with depth L, a second simple tree

(with the same depth) is fitted to the residuals from the first tree. Forecasts from these two

trees are then added together to form an ensemble prediction of the outcome and update

the prediction residuals. The forecast component from the second tree is shrunken by a

factor ν ∈ (0, 1) to prevent overfitting and allow more and different shaped trees. This

procedure is iterated until there are a total number of B trees in the ensemble. The final

output can be represented by an additive model of shallow trees with tuning parameters

(L, ν,B). Specifically, we adpot XGboost in this paper, which is a powerful and efficient

machine learning algorithm based on the gradient boosting framework.

The second one is random forests, a refinement of a more general procedure known as or

bootstrap aggregation, or “bagging” (Breiman, 2001). The baseline tree bagging procedure

is to draw B bootstrapped samples of the data and build a separate regression tree using

each sample. The resulting predictions are then averaged to produce a single forecast. Unlike

49



boosting, each individual tree is deep and not pruned thus makes the individual prediction

variable. Averaging over multiple predictions can reduce the variance and improve the

prediction accuracy impressively.

Random forests provide an improvement over bagged trees by way of a small tweak that

decorrelates the trees. As in bagging, a number of regression trees are built on bootstrapped

training samples. But when building these trees, only a random sample of m predictors is

chosen as split candidates each time a split in a tree is considered. By considering only a

subset of the predictors, random forecasts overcome the problem that the predictions from

the bagged trees will be highly correlated and there is no large reduction in variance if there

are strong predictors in the sample.

The third one is extra trees, which is also a model based on bagging. Unlike traditional

decision tree algorithms, extra trees introduces additional randomness by selecting split

thresholds randomly for each feature, rather than searching for the most optimal split. This

approach leads to greater tree diversity and often improves generalization performance. By

averaging predictions from many such randomized trees, extra trees can reduce overfitting

and increase robustness, making it a powerful and efficient alternative to random forests.
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Table 1: Summary Statistics on Bond Returns and Characteristics

N obs Mean Std
Percentiles

5th 25th 50th 75th 95th

Excess return (%) 1,261,971 0.40 2.60 −3.30 −0.50 0.30 1.30 4.10
Price return (%) 1,261,971 0.10 2.50 −3.50 −0.70 0.10 1.10 3.80
Yield implied carry (%) 1,261,971 0.40 0.20 0.10 0.30 0.40 0.50 0.70
Duration 1,261,971 6.26 3.92 1.33 3.16 5.39 8.68 13.80
Rating 1,261,724 7.21 3.11 2 5 7 9 13
Age 1,261,075 4.23 3.95 0.29 1.44 3.13 5.82 12.41
Maturity 1,261,971 9.88 8.85 1.39 3.55 6.70 13.26 28.10
Size 1,261,971 11.85 2.01 7.71 11.08 12.43 13.12 14.22

The table reports the descriptive statistics for excess bond returns, price returns, yield implied carry, and
some characteristics (including credit rating, duration, size, maturity, and age). The yield-implied carry is
defined in Eq. (2). The sample period spans from January 1991 to June 2019.
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Figure 1: Variable Importance for Public Firms

This figure shows the ranking of the bond and stock characteristics regarding overall model contribution
using the R2 measure. Features are sorted according to the sum of their rankings across all models, with the
most influential features at the top and the least influential at the bottom. The columns correspond to the
individual models, and the color gradient in each column indicates the variables from most influential (dark
orange) to least influential (white). The top 50 features are shown in the figure due to space constraints.
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Figure 2: Variable Importance for Private Firms

This figure shows the ranking of the bond and stock characteristics regarding overall model contribution
using the R2 measure. Features are sorted according to the sum of their rankings across all models, with the
most influential features at the top and the least influential at the bottom. The columns correspond to the
individual models, and the color gradient in each column indicates the variables from most influential (dark
orange) to least influential (white).
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Figure 3: Portfolio-Level Out-of-Sample Prediction Performance for Public
Firms

This figure displays the out-of-sample R2 for 12 corporate bond portfolios using ordinary least squares
(OLS), Lasso, ridge regression (Ridge), elastic net (ENet), principal component regression (PCR), partial
least squares (PLS), XGBoost, random forest (RF), Extratrees , as well as the forecast combining method
(Comb). Rows correspond to rating-maturity portfolios, which are formed at the beginning of each month
based on ratings (AAA&AA, A, BBB, or speculative grades) and time to maturity (≤5 years, 5-10 years,
>10 years) of individual bonds. Color gradients indicate the highest R2

OOS values (dark orange) to the
lowest ones (white). Results are based on 59 bond characteristics and 153 additional equity (firm-level)
characteristics as bond return predictors among public firms. The testing sample spans from July 2004 to
June 2019.
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Figure 4: Portfolio-Level Out-of-Sample Prediction Performance for Private
Firms

This figure displays the out-of-sample R2 for 12 corporate bond portfolios using ordinary least squares
(OLS), Lasso, ridge regression (Ridge), elastic net (ENet), principal component regression (PCR), partial
least squares (PLS), XGBoost, random forest (RF), Extratrees , as well as the forecast combining method
(Comb). Rows correspond to rating-maturity portfolios, which are formed at the beginning of each month
based on ratings (AAA&AA, A, BBB, or speculative grades) and time to maturity (≤5 years, 5-10 years,
>10 years) of individual bonds. Color gradients indicate the highest R2

OOS values (dark orange) to the lowest
ones (white). Results are based on 59 bond characteristics as bond return predictors among private firms.
The testing sample spans from July 2004 to June 2019.
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Figure 5: Market Timing Utility Gains from Machine Learning Forecasts for
Public Firms

This figure displays the certainty equivalent gains (in percentage points) for a mean-variance investor who
optimally invests in a corporate bond portfolio and a risk-free asset based on machine learning forecasts
among public firms. Portfolios are formed at the beginning of each month based on ratings (AAA&AA, A,
BBB, or speculative grades) and time to maturity (≤5 years, 5-10 years, >10 years) of individual bonds.
The weight on the risky bond portfolio is confined to lie between 0 and 150%.The investor’s risk aversion
coefficient γ is set at five. All machine learning models are benchmarked against the yield-implied expected
bond returns. Color gradients differentiate negative certainty equivalent values (white) from positive ones
(dark orange). Cells with asterisks denote statistical significance at the 1%, 5% and 10% level for an extended
version of Diebold and Mariano (1995) test. Results in Panels A and B are based on excess return prediction
and price return prediction, respectively. The sample period spans from July 2004 to June 2019.
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Figure 6: Market Timing Utility Gains from Machine Learning Forecasts for
Private Firms

This figure displays the certainty equivalent gains (in percentage points) for a mean-variance investor who
optimally invests in a corporate bond portfolio and a risk-free asset based on machine learning forecasts
among private firms. Portfolios are formed at the beginning of each month based on ratings (AAA&AA, A,
BBB, or speculative grades) and time to maturity (≤5 years, 5-10 years, >10 years) of individual bonds.
The weight on the risky bond portfolio is confined to lie between 0 and 150%.The investor’s risk aversion
coefficient γ is set at five. All machine learning models are benchmarked against the yield-implied expected
bond returns. Color gradients differentiate negative certainty equivalent values (white) from positive ones
(dark orange). Cells with asterisks denote statistical significance at the 1%, 5% and 10% level for an extended
version of Diebold and Mariano (1995) test. Results in Panels A and B are based on excess return prediction
and price return prediction, respectively. The sample period spans from July 2004 to June 2019.
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Figure 7: Investment Gains from Hedge Portfolios Based on Bond Return Fore-
casts for Public Firms

This figure presents the cumulative returns of long-short portfolios formed with different types of bond return
forecasts. Decile sorted portfolios are constructed in each month for three prediction method—ordinary
least squares (OLS), machine learning forecast combining method (Comb), and yield-implied expected bond
returns (Yield). A long-short strategy is then built by longing the top return forecast portfolio and shorting
the bottom return forecast portfolio. Panel A1 and B1 report the cumulative gross returns based on predicted
excess returns and price returns, respectively. Panel A2 and B2 report the cumulative net returns after
considering transaction costs based on predicted excess returns and price returns, respectively. The sample
period spans from July 2004 to June 2019.
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Figure 8: Investment Gains from Hedge Portfolios Based on Bond Return Fore-
casts for Private Firms

This figure presents the cumulative returns of long-short portfolios formed with different types of bond return
forecasts. Decile sorted portfolios are constructed in each month for three prediction method—ordinary
least squares (OLS), machine learning forecast combining method (Comb), and yield-implied expected bond
returns (Yield). A long-short strategy is then built by longing the top return forecast portfolio and shorting
the bottom return forecast portfolio. Panel A1 and B1 report the cumulative gross returns based on predicted
excess returns and price returns, respectively. Panel A2 and B2 report the cumulative net returns after
considering transaction costs based on predicted excess returns and price returns, respectively. The sample
period spans from July 2004 to June 2019.
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