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This paper reevaluates the Long-Run Risk model proposed by Bansal and Yaron (2004)
using the Kalman filter and Maximum Likelihood estimation method. Our findings show
that the persistence of the small long-run predictable component in the consumption growth
process is the key for the model performance. In our estimation exercises, if we relax the
persistence restriction on the long-run risk parameter and adopt a Maximum Likelihood
estimate, the Long-Run Risk model still requires a relative risk aversion at around 70 to fit
the US data. However, we do not find strong empirical support for the persistence
restriction from the data.
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1. Introduction

During recent decades, various consumption-based asset pricing models have
become work horses in the macro-finance literature.1 Mehra and Prescott (1985)
documented a famous equity premium puzzle, i.e., it is difficult for the con-
sumption-based asset pricing models with power utility function to justify a 6%
annual equity premium and the low risk-free rate. As documented in their paper,
the model requires an unreasonably high relative risk aversion (RRA) (>50) to
generate the 6% equity premium in the U.S equity market. Second, with high
relative risk aversion the model creates an unreasonably high risk-free rate, which

‡Corresponding author.
1Please see Cochrane (2017) for a most recent and comprehensive survey on consumption-based macro-finance
literature.
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is the risk-free rate puzzle emphasized by Weil (1989). Third, for the conditional
expectation and variance of the model-generated Stochastic Discount Factor (SDF)
to be consistent with the data, i.e., the mean and variance combination has to be
within the Hansen-Jagannathan (Hansen and Jagannathan, 1991) Bound, it requires
an even higher relative risk aversion (> 250).

Many papers after Mehra and Prescott (1985) tried to solve the equity premium
puzzle from different perspectives. Some notable papers includes Epstein and Zin
(1989), Campbell and Cochrane (1999), Bansal and Yaron (2004), Barro (2006),
etc. Epstein and Zin (1989) proposed a more flexible utility preference that pre-
serves some desirable features of the power utility, such as the scale-invariance, but
allows for a separation between the elasticity of inter-temporal substitution (EIS)
and relative risk aversion. With Epstein–Zin (Epstein and Zin, 1989, 1991) pre-
ferences, consumption-based asset pricing models still require very high risk
aversion to generate 6% equity premium but it does not create an unreasonably
high risk-free rate, since EIS and risk aversion are not linked in Epstein–Zin
preferences. Thus, Epstein–Zin preferences can solve the risk-free rate puzzle, i.e.,
generate low risk-free rate with reasonably low relative risk aversion, but it cannot
completely solve the equity premium puzzle.

Bansal and Yaron (2004) proposed a long-run risk (LRR) model in order to
solve the equity premium puzzle. There are two key ingredients for LRR model to
match the data. First is the adoption of Epstein–Zin recursive preference, which
breaks the link between the elasticity of inter-temporal substitution and relative risk
aversion. The other ingredient is the introduction of a predictable, tiny but highly
persistent unobserved component into the consumption growth process (the “Long-
Run risk”). With reasonable model parameters, i.e., elasticity of inter-temporal
substitution equal to 1.5 and relative risk aversion set at 10, the LRR model is able
to generate patterns found in the US data. However, the model has two short-
comings. First, it imposes strong assumptions about the dynamics of the unob-
served component embedded in the consumption growth process. It is assumed that
the predictable component follows an AR(1) process that is highly persistent (with
AR(1) coefficient � ¼ 0:98) but with very small magnitude (very tiny conditional
standard deviation �x). Second, calibration loses information contained in the data
as the calibrated parameters only match to certain data moments. In this paper,
we try to re-evaluate the empirical performance of the long-run risk model when all
the parameters are econometrically estimated instead of being calibrated. Since the
long-run risk component is not unobservable from the consumption data, a natural
solution is to form a state-space representation and estimate the consumption
growth process via the Kalman filtering techniques. The state-space form also
facilitates the calculation of the likelihood of the observed data given certain model
parameters and makes the maximum likelihood methods easily applicable in
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parameter estimation. We also employ Metropolis-Hastings algorithm to construct
a posterior distribution and confidence intervals for the ML estimators.

The Kalman filter has been widely used in economics and finance research,
when some latent factors are involved in modelling. For example, Babbs and
Nowman (1999) use the Kalman filter to deal with unobservable state variables in
general linear Gaussian model of the bond term structure. Schwartz and Smith
(2000) apply the Kalman filter to estimate a latent two-factor model of commodity
prices that better accommodates both the short-term variation and long-term dy-
namics of price movements. Please see Harvey (1990) for a comprehensive review
of Kalman filtering and its applications in econometrics.

Our results indicate that a highly persistent unobserved component (� > 0:98) in
the consumption growth process does not have a strong support from the data.
Imposing some restriction on the parameter values is necessary in order for the LRR
model to generate patterns consistent with the data. If we relax the restrictions and use
the estimated parameter values, the LRR model still requires very high relative risk
aversion to generate 6% annual equity premium. The rest of the paper is organized as
follows. In Sec. 2, we develop the model settings and derive the analytical solution.
We explain the data used in the paper and discuss model performance in Sec. 3. Main
estimation results are in Sec. 4 and Sec. 5 concludes.

2. Theoretical Framework

Consistent with Bansal and Yaron (2004), we assume that a representative agent
has Epstein-Zin preference.

Ut ¼ (1� β)C 1�η
t þ β Et U 1�γ

tþ1

� �� � 1�η
1�γ

� � 1
1�η
: ð1Þ

For the model to yield a closed-form analytical solution, we further assume the
EIS η ¼ 1. Then Eq. (1) will take the form

Ut ¼ C 1�β
t EtU

1�γ
tþ1

� � β
1�γ
: ð2Þ

Take logarithm on both sides of Eq. (2),

ut ¼ (1� β)ct þ
β

1� γ
log (Et( exp [(1� γ)utþ1])), ð3Þ

where lowercase letters refer to natural logs.
The log of consumption growth contains a tiny but persistent unobserved

component, denoted as xt. It follows a stationary AR(1) process with � < 1:

ctþ1 ¼ ct þ μc þ xt þ �c"
c
tþ1, ð4Þ

xtþ1 ¼ �xt þ �x"
x
tþ1, ð5Þ
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where μc is the unconditional mean of consumption growth, �c, �x stand for the
variance of consumption growth and long-run risk term respectively. The inno-
vation " xt and " ct both follow an i:i:d: standard normal distribution and are
independent of each other. The analytical solution of ut can be solved by using
guess and verify method.2 Note that our model setup is a simplified version of the
model in Bansal and Yaron (2004). We also solved the model with a dividend
growth process as in Bansal and Yaron (2004) model, but the dividend term does
not show up in the analytical solution due to cancellation, so the results remain
the same.

ut ¼
β

1� β
μc þ (1� γ)

�2
c

2
þ β2

2(1� β�)2
�2
x

� �� �
þ ct þ

β
1� β�

xt: ð6Þ

One can also show that the SDF Mtþ1 will equal to

Mtþ1 ¼ β
Ctþ1

Ct

� ��1 exp [(1� γ)utþ1]
Et exp ((1� γ)utþ1)½ �
� �

, ð7Þ

which can be written in terms of ctþ1 and xtþ1 as follows:

mtþ1 ¼ log β � (μc þ xt)�
1
2
(1� γ)2 �2

c þ
β�x

1� β�

� �2� �

þ (1� γ)
β�x

1� β�
" xtþ1 � γ�c"

c
tþ1: ð8Þ

Its unconditional mean and standard deviation will be3

E(Mtþ1) ¼ β exp �μc þ γ� 1
2

� �
�2
c þ

�2
x

2(1� �2)

� �
, ð9Þ

�Mtþ1
¼ E(Mtþ1) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

�2
x

1� �2
þ γ�cð Þ2 þ 1� γð Þβ�x

1� β�

� �2� �
� 1

s
: ð10Þ

3. Data and Model Performance

The model is estimated based on quarterly data. We collect the US per capita
consumption on both non-durable goods and services, quarterly real returns on
value weighted S&P 500 index and 3-month Treasury bills, etc. from the Federal
Reserve Economic Data (FRED) database. The Risk free rate, dividends and value-
weighted market return data of the same period are from CRSP. We also include

2See Appendix A for details.
3See Appendix B for details.
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6 Fama-French portfolios as possible assets available in the market. All data series
ranges from 1948Q2 to 2011Q3.

Given all data, we construct the Hansen-Jagannathan bound for the SDF in
the market (i) only has one market portfolio and risk free asset, (ii) has all assets in
(i) plus the 6 Fama-French Portfolios (Fama and French, 1989). As given in Fig. 1,
the hyperbolic curves show the relation between the mean and minimum variance
of SDF. SDFs are consistent with the observed data only when their unconditional
means and variances fall in the hyperbolic area.

Case I: CRRA. If we use the simple CRRA power utility function, the SDF in this
case takes the form of

Mtþ1 ¼ β
Ctþ1

Ct

� ��γ

: ð11Þ

By assuming the logCt follow drifted random walk

ctþ1 ¼ ct þ μc þ �c"
c
tþ1, " ctþ1 � i:i:d: Normal (0, 1), ð12Þ

it can be shown

E(Mtþ1) ¼ β exp �γμc þ
1
2
(γ�c)

2

� �
,

Var(Mtþ1) ¼ E(Mtþ1) �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp (γ2�2

c)� 1
p

:

ð13Þ

Figure 1. The HJ bound for the SDF in two markets.
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We estimate μc and �2
c from the consumption data, as shown in Table 1. Using

Eq. (13), we can plot the mean and variance of Mtþ1 for different γ’s in Fig. 2(a). It
is clear that the CRRA utility performs very badly. In order to have a mean-
variance pair fallen into the Hansen–Jagannathan Bound, one almost has to use a γ
be as large as 220. Although statistically a small γ may still be acceptable (a formal

Table 1. Parameter setting.

Model

Variable Panel (a) Panel (b)
CRRA and Epstein-Zin Long-run risk

β 0:995 0:995
μc 0:0042 0:0042
�c 0:0062 0:0062
� — 0:98
�x — 0:00062

Note: This table provides the calibrated parameter setting for
all three models. The discount factor β are set to be 0:995 for
all three models. For CRRA utility function and Epstein–Zin
preference, we estimate μc and �c from Eq. (12) and present
the results in Panel (a). Panel (b) shows the parameter setting
for the Long-run risk model. We follow the setting in Bansal
and Yaron (2004) for parameter � and �x.

Figure 2. Performances of different models.
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testing approach can be accomplished by using the Hansen and Jagannathan
distance as in (Hansen and Jagannathan, 1997)), according to other literature
however, we will still have to have a large RRA as pointed in Mehra and Prescott
(1985). The reason behind this result is the parameter γ determines both EIS and
RRA of the CRRA utility function. Due to the low volatility in consumption
growth, we have to have a large γ to generate the average 6% equity premium.

Case II: Epstein–Zin. In Epstein–Zin preference setting with η ¼ 1, the SDF
is given by4

E(Mtþ1) ¼ β exp �μc þ �2
c γ� 1

2

� �� �
,

�Mtþ1
¼ E(Mtþ1) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp (γ2�2

c)� 1
p

:

ð14Þ

Same as before, we use the estimates μc and �
2
c from Table 1 Panel (a), and plot the

mean and variance of Mtþ1 for different γ’s in Fig. 2(b). Since for Epstein–Zin
preferences, EIS and RRA are determined by parameter η and γ separately, we only
need a γ ’ 85 for the model to match the data. Although this result shows a
big progress, we still need an unreasonable large RRA γ to generate the equity
premium.

Case III: Long-Run risk. The long-run risk, denoted by xt in the model, comes
from the long run economy uncertainty (conditional volatility of consumption).
The parameter settings are shown in Table 1, Panel (b). The values of μc and �

2
c are

obtained in the same way as we did in Panel (a). For � and �2
x , we use the

calibrated value from Bansal and Yaron (2004). As Bansal and Yaron claim, by
adding this small but persistent component xt, the consumption volatility will
increase dramatically in the long run (this uncertainty will contribute as much as
39% of variance of the pricing kernel according to the variance decomposition in
Bansal and Yaron (2004)). In this model, we only need γ ’ 30 to fit our model with
data, as shown in Fig. 2(c).

4. Estimation of the Long-Run Risk Component

Although the xt component seems to have a sound economic background
(undetectable economy uncertainty in the long run) and this setting does improve
the model performance, the assumption is still questionable. Bansal and Yaron
(2004) assumed that xt follows a very persistent AR(1) process and calibrated the
value of � to be 0.98. Meanwhile, in order to make the short-run conditional
consumption volatility small, they calibrated �x ’ �c

10. In this section, we will

4See Appendix B for details.
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estimate � and �x and plot both distributions to check whether the original
assumptions are consistent with the data under normality assumptions. Noticing
that the variable xt is latent, we use the Kalman Filter to calculate the conditional
likelihood of xtjt.

4.1. The state-space form

Let the state vector z 0t ¼ (ct xt) 0. According to Hamilton (1994), the measurement
equation is simply

ct ¼ 1 0ð Þ|fflffl{zfflffl}
H

� ct
xt

� �
|ffl{zffl}

zt

: ð15Þ

The state equation will be

1 0
0 1

� �
|fflfflffl{zfflfflffl}

A0

ctþ1

xtþ1

� �
|fflfflffl{zfflfflffl} ¼

ztþ1

μc
0

� �
þ 1 1

0 �

� �
|fflfflffl{zfflfflffl}

A1

ct
xt

� �
|ffl{zffl}

zt

þ �c"
c
tþ1

�x"
x
tþ1

� �
|fflfflfflffl{zfflfflfflffl}

�tþ1

, ð16Þ

The innovation �tþ1 follows i:i:d: normal distribution with mean 0 and variance-
covariance matrix Q given by

Q ¼ E(�t�
0
t) ¼

�2
c 0

0 �2
x

 !
, 8t: ð17Þ

4.2. Main results

We estimate all parameters μc, �, �c and �x from the state-space form (Eq. (16)) by
Kalman Filter. To check the robustness of MLE, we consider three cases. In the
first case, we did not specify any restriction beyond natural ones to the model. In
the second case, we impose a mild restriction on the persistence feature of xt by
letting � 2 [0:9, 1). For the last case, we assume xt follows an extremely persistent
AR(1) process by letting the value of � 2 [0:98, 1) as in Bansal and Yaron (2004).
For all three cases, we set the initial value of parameters equal to their baseline
calibration, i.e.,

μc ¼ 0:0042, �c ¼ 0:0062,

� ¼ 0:98, �x ¼ 0:00062:
ð18Þ

4.2.1. Natural restriction

In this case, we only impose natural restrictions on each parameter, i.e., we let
standard deviation �c and �x be greater than 0, and require the AR correlation
coefficient � 2 (0, 1) to ensure stationarity. As the first step, we use the the data to
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obtain the MLE of all four parameters from the Kalman Filter by setting the
parameter initial values equal to their baseline calibrations in Eq. (18). The results
are presented in the first column of Table 2. It can easily be seen that the estimated
consumption growth μ̂c is quite close to its baseline calibration 0:004215, but
the estimation of the rest three parameters is significantly different from the
baseline calibration. In the baseline Eq. (18), �x ’ �c

10 while the MLE shows
�̂x ’ �̂c

2 . This result contradicts Bansal and Yaron’s assumption that xt is not de-
tectable in the short run since now �̂c and �̂x are of the same order of magnitude.
The short-run consumption volatility will definitely be affected given the fairly
large xt component. One can also notice that �̂ ¼ 0:741 is far less than its cali-
bration, showing that even if the dynamics of the intangible component xt follows
Eq. (5), the data suggests this process is far less persistent than Bansal and Yaron
(2004) assumed.

We also construct the empirical probability density functions (PDF) of all
parameters using random walk Metropolis–Hasting algorithm. Initial values are set
to be equal to their ML estimates. We generate a sample of size 50, 000 and plot the
empirical PDFs of all four parameters in Fig. 3. The upper right panel shows the
distribution of μc and the two panels in the bottom row show the PDFs of �x and
�c, respectively. All three densities are symmetric and bell-shaped with the mean
value close to the MLE, suggesting that μc,�c,�x are following normal distribu-
tions. In the upper left panel we present the empirical distribution of �. The peak of
the distribution verifies our finding of MLE and its shape indicates most of density
are located in within (0:72, 0:8). Besides this, the shape of � does not carry any
information on its underlying distribution. This finding doesn’t support the
assumptions made in Bansal and Yaron (2004) because data suggests it’s very
unlikely to have the persistence parameter � to be close to 0:98 (or any value
greater than 0:9 even). We also notice that the distribution of �c and �x overlap

Table 2. The MLE of LRR model under different settings.

Natural restriction Mild restriction Extreme restriction

μc 0:004274 0:004239 0:003894
�c 0:004628 0:004999 0:005185
� 0:741086 0:90 0:98
�x 0:002719 0:001826 0:001422

Note: This table shows the maximum likelihood estimation of
LRR model under different setting for all three models. The left
column shows the result under natural restriction. The middle
column imposes a more restricted constrain on the correlation
coefficient that � 2 [0:9, 1). In the right column, we further
assume that � 2 [0:98, 1).
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in (0:35, 0:4), meaning we may fail to reject the hypothesis �x ¼ �c. As we have
already mentioned, this finding questions the intangibility assumption that xt is a
tiny component hard to be detected.

4.2.2. Mild and extreme restrictions

To investigate how μc, �c and �x are affected by the changes in �, we impose
various restrictions on � and construct corresponding empirical distribution for
each parameter. In the mild restriction case, we assume � can only take value in
[0:9, 1). The Kalman MLE results under this restriction are shown in the middle
column of Table 2. Comparing with results in the first column, we find quite
similar results: μ̂c approximately equal to its calibrated value but the rest three
parameters deviate significantly. The value of �̂c increases and �̂x are decreasing
comparing with the previous case, however �̂x ’ �̂c

3 still indicates that �c and �x

are approximately of the same order of magnitude. The �̂ hit the lower bound at
0:9, still suggesting xt is less persistent than it is in the original model. In sum, the
point estimation suggests that xt follows a less persistent and detectable process.

We also construct the empirical PDFs of all parameters in Fig. 4. In the upper
left panel we present the PDF of �. One can read from the figure that even when we
let � vary in [0:9, 1), it is very unlikely to have � exceeded 0:945. The PDF of μc
still have bell shape, however, the whole distribution started to shift to the left and
has heavier tails. �x and �c still distributed like normal but now their bulks are

Figure 3. Empirical distribution for 4 parameters under the natural restriction � 2 (0, 1).
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shifting to left and right, respectively. Although �̂x ’ �̂c
3 , we can reject the

hypothesis �x ¼ �c given their PDFs.
For the extreme case, we let � 2 [0:98, 1): The MLE of all parameters are shown

in the right column of Table 2. In this case, the likelihood is maximized when �̂

takes the value at the lower bound of 0:98, �̂c continues increasing while �̂x

continues decreasing; μ̂c deviates from the baseline calibration 0.0042. The em-
pirical PDFs are shown in Fig. 5. Interestingly, the PDF of μc no longer possesses a
normal shape, instead we now have a highly right-skewed distribution. The bulks
of �x and �c continue shifting, and therefore, we retain the conclusion that we can
reject �x ¼ �c.

Figures 3–5 indicate that � is the key parameter which controls the dynamics of
the LRR model. As � increases, The distributions of μc and �x shift to the left and the
distribution of �c shifts to the right. The results show that the intangibility of xt mostly
comes from the persistence restriction imposed on �. The findings indicate that the
data do not provide enough support for introducing this highly persistent xt.

4.3. Diagnostic test

We present the model performance by using the parameter estimations from MLE
under the natural restriction in Fig. 6. The figure shows that LRR model will not
satisfy the Hansen–Jagannathan min-variance boundary unless we have the RRA γ
approximately equal to 70. Compared to the performance of usual Epstein–Zin

Figure 4. Empirical distribution for 4 parameters under the mild restriction � 2 [0:9, 1).

Testing the Long-Run Risk Model

1850019-11



Figure 5. Empirical distribution for 4 parameters under the extreme restriction
� 2 [0:98, 1).

Figure 6. Model performance under natural restriction.
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recursive preference in Panel (B) of Fig. 2, we do not find any significant
improvement for the LRR model.

5. Conclusion

In this paper, we use the Kalman Filter and Maximum Likelihood to estimate and
reevaluate the credibility of the long-run risk model as in Bansal and Yaron (2004).
We show that the persistent parameter � is the key component that governs the
dynamics of the LRR model. The model performance strongly relies on the persis-
tence restriction imposed on �. Under the more reasonable restrictions, the distri-
bution of �c and �x obtained fromMetropolis–Hastings algorithm lead to rejection of
the null hypothesis that �x ¼ �c, which will put the small magnitude assumption
under question. Also, under estimated parameter values, the LRRmodel still requires
relative risk aversion to be around 70 for the model to fit the US data. Model
performance improves only when we impose the persistence restriction on the un-
observed component as Bansal and Yaron (2004) did in their calibration. However,
imposing such restriction seems to lack empirical support from the data.
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Appendix A. Value Function

Guess the solution to Eq. (3) takes the form ut ¼ k0 þ k1ct þ k2xt, where k0, k1
and k2 are constants. Forward the value function for one period then substitute
into Eq. (3), we will have

ut ¼ (1� β)ct þ
β

1� γ
log [Et( exp ((1� γ)(k0 þ k1ctþ1 þ k2xtþ1)))]: ðA:1Þ

Substitute Eqs. (4) and (5) in Eq. (A.1)

ut ¼ (1� β)ct þ
β

1� γ
log [ exp ((1� γ)(k0 þ k1(ct þ μc)þ (k1 þ �k2)xt))]

þ β
1� γ

logEt[ exp ((1� γ)(k1�c"
c
tþ1 þ k2�x"

x
tþ1))]

¼ β k0 þ k1μc þ (1� γ)
k 2
1�

2
c þ k 2

2�
2
x

2

� �� �
þ (1� β þ βk1)ct

þ β(k1 þ k2�)xt: ðA:2Þ
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The last equality comes from the log normal assumption. Notice the LHS of
Eq. (A.2) will be exactly k0 þ k1ct þ k2xt from our guess. By matching the coef-
ficients of each variables in Eq. (A.2), we will have

k0 ¼
β

1� β
μc þ 1� γð Þ �2

c

2
þ β2

2(1� β�)2
�2
x

� �� �
,

k1 ¼ 1,

k2 ¼
β

1� β�
:

Appendix B. SDF

If we consider a general form of Epstein–Zin preference with EIS ¼ η and rra ¼ γ,
let μtþ1 ¼ (EtU

1�γ
tþ1 )

1
1�γ , the SDF can be written as

Mtþ1 ¼ β
Ctþ1

Ct

� ��η

� Utþ1

μtþ1

� �η�γ

ðB:1Þ

For the special case with η ¼ 1, we have

Mtþ1 ¼ β
Ctþ1

Ct

� ��1

� exp [(1� γ)utþ1]
Et[ exp ((1� γ)utþ1)]

� �
ðB:2Þ

Take logarithm on both sides, we will have

mtþ1 ¼ log β ��ctþ1 þ (1� γ)utþ1 � logEt[ exp ((1� γ)utþ1)]: ðB:3Þ
Substitute Eqs. (6), (4) and (5) in Eq. (B.4),

mtþ1 ¼ log β � (μc þ xt)�
1
2
(1� γ)2 �2

c þ
β�x

1� β�

� �2� �
þ (1� γ)

β�x

1� β�
" xtþ1 � γ�c"

c
tþ1: ðB:4Þ

Based on the normality assumption of innovation f" ct , " xt g, mtþ1 will also follow
normal distribution and Mtþ1 will follow log-normal distribution. Therefore, the
unconditional mean and standard deviation of Mtþ1 will be

E(Mtþ1) ¼ β exp �μc þ γ� 1
2

� �
�2
c þ

�2
x

2 1� �2ð Þ
� �

�Mtþ1
¼ E(Mtþ1) �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp

�2
x

1� �2
þ (γ�c)2 þ

(1� γ)β�x

1� β�

� �2� �
� 1

s
:

J. Wang & K. Wu

1850019-14



References

Babbs, SH and KB Nowman (1999). Kalman filtering of generalized vasicek term structure
models. Journal of Financial and Quantitative Analysis, 34(1), 115–130.

Bansal, R and A Yaron (2004). Risks for the long run: A potential resolution of asset
pricing puzzles. The Journal of Finance, 59(4), 1481–1509.

Barro, RJ (2006). Rare disasters and asset markets in the twentieth century. The Quarterly
Journal of Economics, 121(3), 823–866.

Campbell, JY and JH Cochrane (1999). By force of habit: A consumption-based expla-
nation of aggregate stock market behavior. The Journal of Political Economy, 107(2),
205–251.

Cochrane, JH (2017). Macro-Finance. Review of Finance, 21(3), 945–985.
Epstein, LG and SE Zin (1989). Substitution, risk aversion, and the temporal behavior

of consumption and asset returns: A theoretical framework. Econometrica, 57(4),
937–969.

Epstein, LG and SE Zin (1991). Substitution, risk aversion, and the temporal behavior of
consumption and asset returns: An empirical analysis. Journal of Political Economy,
99(2), 263–286.

Fama, EF and KR French (1989). Business conditions and expected returns on stocks and
bonds. Journal of Financial Economics, 25(1), 23–49.

Hamilton, JD (1994). Time Series Analysis. Princeton: Princeton University Press.
Hansen, LP and R Jagannathan (1991). Implications of security market data for models

of dynamic economies. Journal of Political Economy, 99(2), 225–262.
Hansen, LP and R Jagannathan (1997). Assessing specification errors in stochastic

discount factor models. The Journal of Finance, 52(2), 557–590.
Harvey, AC (1990). Forecasting, Structural Time Series Models and the Kalman Filter.

Cambridge: Cambridge University Press.
Mehra, R and EC Prescott (1985). The equity premium: A puzzle. Journal of Monetary

Economics, 15, 145–161.
Schwartz, E and JE Smith (2000). Short-term variations and long-term dynamics in

commodity prices. Management Science, 46(7), 893–911.
Weil, P. (1989). The equity premium puzzle and the risk-free rate puzzle. Journal of

Monetary Economics, 24, 401–421.

Testing the Long-Run Risk Model

1850019-15


	TESTING THE LONG-RUN RISK MODEL: A KALMAN FILTER APPROACH
	1. Introduction
	2. Theoretical Framework
	3. Data and Model Performance
	4. Estimation of the Long-Run Risk Component
	4.1. The state-space form
	4.2. Main results
	4.2.1. Natural restriction
	4.2.2. Mild and extreme restrictions

	4.3. Diagnostic test

	5. Conclusion
	Acknowledgments
	Appendix A. Value Function
	Appendix B. SDF
	References


