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Abstract

We investigate how artificial intelligence (AI) adoption by mutual funds influences
their information processing horizons and the capital market consequences. Employing
a novel AI adoption measure, we document a significant shift towards short-termism
among AI-adopting funds. Specifically, AI funds’ quarterly trades exhibit substantially
stronger predictive power for near-term earnings (1-5 quarters ahead) but markedly
weaker association with long-term earnings (9-12 quarters ahead) compared to non-AI
funds. This differential effect is robust when we use the instrumental variable approach
to address endogeneity and is more pronounced after plausible exogenous shocks that
increase the effectiveness of AI in information processing. Furthermore, we find that
companies with greater AI fund ownership experience improved stock price informa-
tiveness concerning short-term future earnings, but reduced price informativeness for
long-term earnings. Finally, we observe diminished investment-Tobin’s Q sensitivity
among firms with higher AI fund ownership, consistent with the notion that AI funds’
short-termism may compromise the usefulness of stock prices in guiding long-term
investment decisions. These results demonstrate the unintended consequences of tech-
nological advancement in asset management and carry important implications for the
informational and functional efficiency of capital markets.
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1 Introduction

The financial industry is undergoing a rapid transformation driven by advances in artificial

intelligence (AI) technology and the proliferation of various data sources. Mutual funds,

in particular, are increasingly adopting AI-powered tools to enhance their information pro-

cessing capabilities (Bartram et al., 2020; Bonelli, 2023; ?).1 While AI’s potential is widely

recognized, empirical evidence on its impact on mutual fund information processing remains

limited (?). This study addresses this gap by examining how AI adoption impacts a fund’s

information processing horizon, and its broader effects on the informational and functional

efficiency of stock prices.

We hypothesize that AI adoption by mutual funds exacerbates short-termism in informa-

tion processing. This prediction stems from the differential effectiveness of AI technologies

across various forecasting horizons. Current AI systems excel at rapidly processing vast

datasets and identifying complex patterns, making them well-suited for exploiting short-

term market inefficiencies. However, long-term financial forecasting presents fundamentally

different challenges, requiring causal reasoning, scenario analysis, and understanding of qual-

itative factors such as management quality, competitive dynamics, and evolving industry

landscapes. These aspects are typically intangible and often involve interpreting subtle con-

textual clues and predicting structural economic changes–tasks where the current AI systems

still struggle (?Cao et al., 2024; Boyacı et al., 2024).2

This asymmetry in AI’s effectiveness thus creates a cost differential: processing infor-

mation for short-term analysis becomes significantly cheaper and more efficient with AI,

while obtaining reliable long-term insights remains relatively more resource-intensive. As

1According to Mercer’s 2024 survey results of global investment managers, the use of AI in investment
strategy and research has expanded well beyond the traditional ”quant” group, with only 9% of respondents
indicating that they have no plans to use AI within their investment strategy.

2For example, ? note that short-term trading, which involves holding periods of days to weeks, has
become increasingly automated as portfolio managers search for new sources of alpha. However, they observe
that ”So far, AI methods have not been feasible for long-term investing due to the difficulty of creating a
suitable knowledge base for investing” and the absence of sufficient training data from which machine learning
algorithms could learn the relevant knowledge for valuation.
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Kacperczyk et al. (2016) demonstrate, information-processing attention is scarce and opti-

mally allocated where returns are highest. If AI adoption leads to a greater decrease in the

marginal cost of short-term information processing, fund managers face incentives to reallo-

cate their limited time and attention toward short-term signals at the expense of long-term

analysis.

As mutual funds’ private information is incorporated into stock prices through their

trading (Jiang et al., 2014; Lee and Zhu, 2022), this predicted shift in the informational

content of AI fund trades has broader implications. A greater emphasis on short-term signals

by AI funds could lead to stock prices becoming more reflective of near-term earnings news

but less informative about long-term fundamental value. This has significant implications

for the usefulness of stock prices in guiding firms’ real investment decisions (Chen et al.,

2007). Optimal investment decisions should be based on the present value of long-term

cash flows (Hirshleifer, 1958). If AI-driven trading leads to an overemphasis on short-term

performance in stock prices, these prices would be less useful for guiding firms’ investment

decisions, potentially leading to suboptimal resource allocation.

We test these hypotheses using a sample of U.S. mutual funds from 2010 to 2023, a period

witnessing increasing adoption of AI technology in the industry. We designate a mutual fund

as an ”AI fund” if any of the following three conditions are satisfied: i) it explicitly states the

adoption of AI technology in its investment process in the Principal Investment Strategies

section of the summary prospectus (497-K filings); ii) the fund applies for AI-related patents;

or iii) the fund’s management team possesses AI-related expertise. Using this comprehensive

approach, we identify 333 AI funds as of the end of 2023, representing 23% of the active

equity mutual fund population.

Our empirical analysis yields three main findings. First, we document that AI adoption

significantly alters mutual funds’ information processing horizons. Following AI adoption,

funds’ trades exhibit a substantially stronger association with near-term earnings (1-5 quar-

ters ahead) but a markedly weaker association with long-term earnings (9-12 quarters ahead).
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This pattern persists after controlling for fund and stock characteristics and addressing en-

dogeneity through instrumental variable approaches and quasi-natural experiments. Specif-

ically, we exploit the introduction of transformer-based language models as an exogenous

shock to AI effectiveness, finding consistent evidence of increased short-termism following

this technological advancement.

Second, we find that firms with higher AI fund ownership experience significant changes

in their stock price informativeness. Using measures developed by Bai et al. (2016) and the

future earnings response coefficient literature (Collins et al., 1994; Lundholm and Myers,

2002; Choi et al., 2019), we document that greater AI fund ownership is associated with

improved price informativeness regarding short-term earnings but reduced informativeness

about long-term earnings. This suggests that AI funds’ trading patterns are reshaping the

informational content of stock prices, enhancing the incorporation of short-term signals while

potentially degrading long-term price information.3

Third, we find that the investment-Q sensitivity is significantly lower for firms with higher

AI fund ownership, indicating that these firms’ investment decisions become less responsive

to their stock prices. This finding suggests that the shift in price informativeness has real

consequences for corporate decision-making, leading to decreased usefulness in guiding cor-

porate investment decisions and potentially affecting the efficiency of capital allocation.

Our paper contributes to the literature in several ways. First, we offer novel empirical

evidence on the nuanced effects of AI adoption within the asset management industry on

information production in financial markets. A substantial body of research, both theoreti-

cal and empirical, posits that decreased costs of information acquisition incentivize investors

3One might be concerned that AI funds select firms already exhibiting these informativeness patterns.
This selection hypothesis is unlikely to fully explain our results for four reasons: (1) our within-fund analysis
shows that the same funds exhibit changed information processing patterns after AI adoption; (2) our
results remain robust when controlling for firm fixed effects, which would absorb selection effects if they were
driving the results; (3) our instrumental variables approach using funds’ ex-ante exposure to AI talent and
geographic distance to the nearest AI hubs provides further evidence of causality by isolating variation in
AI fund ownership plausibly exogenous to firm-specific informativeness patterns; and (4) our comprehensive
identification strategy fully accounts for differences in current earnings information between stocks held by
AI investors and those held by traditional investors.
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to produce more information (Grossman and Stiglitz, 1980; Verrecchia, 1982; Blankespoor

et al., 2020). Given the pervasive evidence on the effectiveness of AI technology in financial

forecasting (Gu et al., 2020; Cao et al., 2024), it might be presumed that AI adoption would

uniformly enhance information production. Our study challenges this view by demonstrat-

ing that AI adoption fundamentally alters the time horizon of mutual funds’ information

acquisition: while it enhances the processing of short-term information, it also leads to a

reduction in the production and utilization of long-term fundamental information. This tem-

poral reallocation of attention represents a previously unexplored mechanism through which

technological advancement reshapes–rather than simply augments–information production

in financial markets.

Second, we contribute to the literature on stock price informativeness by showing that

the influence of AI technology varies significantly with the information horizon. Bai et al.

(2016) suggest that technological advancements should enhance price informativeness. Our

findings introduce a crucial qualification to this narrative in the context of AI. We reveal

that while AI technology may indeed enhance the incorporation of short-term information

into stock prices, it can concurrently reduce price informativeness regarding firms’ long-term

fundamentals. This finding is critical, as a decline in long-horizon price informativeness

can potentially jeopardize the role of stock prices as effective signals for efficient resource

allocation in the economy (Fama, 1970; Baker et al., 2009; Bond et al., 2012).

Third, our paper establishes a direct empirical link between a specific technological inno-

vation in asset management–AI adoption–and its tangible consequences for real corporate in-

vestment. We provide compelling evidence that firms with greater ownership by AI-adopting

funds exhibit significantly lower sensitivity of their investment to Tobin’s Q. This demon-

strates that the AI-induced short-term focus of these influential investors is not merely an

internal characteristic of their trading strategies but transmits to the real sector, materially

affecting how firms respond to market signals in their capital expenditure decisions (Chen

et al., 2007; Edmans et al., 2017). Our findings thus contribute fresh insights to the litera-
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ture on the real effects of financial markets, illustrating a novel channel–AI-driven changes in

investor horizons–through which financial technology can impact capital allocation efficiency

across the economy.

The remainder of the paper proceeds as follows: Section 2 reviews the critical literature

relevant to our study and develops our testable hypotheses regarding the effect of AI adoption

on the mutual funds’ short-termism, as well as on the stock price informativeness and real

investments. We present the data and variables that we use to test these hypotheses in

Section 3. In Section 4, we present our main findings. Section 5 concludes.

2 Literature Review and Hypothesis Development

2.1 AI Adoption in Financial Markets

The adoption of artificial intelligence in asset management represents a significant shift in

how market participants process information and make investment decisions (Bartram et al.,

2020). Recent advances in machine learning, natural language processing, and computational

capabilities have dramatically expanded AI’s applications in finance, moving well beyond

early neural networks (Trippi and Turban, 1992) to sophisticated algorithms that can process

vast amounts of structured and unstructured data (Gu et al., 2020; Jiang et al., 2023).

However, evidence on AI’s impact on investment performance presents a more nuanced

picture. Abis (2020) finds that quantitative funds outperform during periods of market

volatility but underperform in normal market conditions. Grennan and Michaely (2020)

document that while AI-using analysts make more accurate forecasts, this does not consis-

tently translate into greater value in their recommendations. ? finds that mutual funds with

more AI-related job postings outperform other funds. But the outperformance only exists

among stocks with voluminous information. These mixed findings suggest that AI adoption

may have heterogeneous effects across different market contexts and investment horizons.
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2.2 Information Acquisition and Forecast Horizons

The literature on information acquisition in financial markets establishes that investors allo-

cate limited attention and resources across different types of information (Kacperczyk et al.,

2016). The classic model of Grossman and Stiglitz (1980) demonstrates that investors ratio-

nally acquire information until the marginal cost equals the marginal benefit. Building on

this foundation, Verrecchia (1982) and Admati (1985) show that investors may specialize in

acquiring specific types of information based on their comparative advantages.

Recent theoretical work suggests that technological innovations can alter information ac-

quisition strategies by changing the relative costs or benefits of different types of information.

Farboodi et al. (2022) find that investors increase their data processing substantially for large,

high-growth firms (but not for other types of firms) as the benefit of data of these firms is

larger for investors. Similarly, Dugast and Foucault (2018) model how technological changes

affect the trade-off between fast, low-precision signals and slower, high-precision information,

and suggest that improvement in information technologies may reduce price informativeness

because a decline in the cost of producing low-precision raw signals may reduce the demand

for more precise signals (based on fundamental analysis). These theoretical insights align

with the empirical characteristics of current AI technologies. Machine learning algorithms

excel at identifying statistical patterns in large datasets but face challenges in causal in-

ference and long-term forecasting that require domain expertise, contextual understanding,

and qualitative judgment (?Cao et al., 2024; Boyacı et al., 2024; ?).

Our research also relates to a recent study by Dessaint et al. (2024), who demonstrate

that alternative data are predominantly informative for short-term future outcomes and

find that exposure to such data diminishes the informativeness of equity analysts’ longer-

horizon forecasts. However, our paper distinguishes itself and contributes uniquely in several

important dimensions:

Primary Focus on AI Adoption vs. Data Availability: First, our paper’s central

investigation diverges significantly: Dessaint et al. (2024) analyzes the effects of alternative
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data availability, whereas we focus the strategic adoption of AI as a core production tech-

nology by mutual funds. While AI is an important tool for processing alternative data, our

primary focus is on how the deliberate managerial decision by funds to integrate AI funda-

mentally reshapes their information processing incentives and overall investment behavior–a

distinct and broader inquiry than the impact of access to any specific data type.

Generalizability to and Direct Evidence from Mutual Fund Managers: Second,

we provide direct empirical evidence on the impact of AI adoption on mutual fund managers,

a critically different group of market participants than the equity analysts studied by Dessaint

et al. (2024). Sell-side analysts and mutual fund managers operate under distinct incentive

structures, clienteles, and regulatory frameworks; notably, fund managers are pivotal capital

allocators, not just information intermediaries. For example, prior research find that ana-

lysts may have limited incentives to produce accurate long-term earnings forecasts, with some

studies indicating their long-term forecasts can be less accurate than some naive benchmarks

(Da and Warachka, 2011; Bradshaw et al., 2012). Therefore, insights from analyst behavior

may not readily translate. Our study offers unique evidence on how AI adoption specifi-

cally reshapes the information processing horizons of these key decision-makers in capital

allocation.

Broader Consequences Beyond Analyst Forecasts: Finally, our paper investigates

more extensive capital market and real economic consequences arising from AI-induced shifts

in fund managers’ information horizons. While Dessaint et al. (2024) focuses on the impli-

cations for analyst forecast informativeness only, we demonstrate that the intensified short-

termism among AI-adopting mutual funds has far-reaching downstream effects. Specifically,

we document: (i) a significant degradation in stock price informativeness concerning firms’

long-term fundamental values, with implications for overall market efficiency; and (ii) tangi-

ble real economic consequences, evidenced by a reduced sensitivity of corporate investment to

Tobin’s Q in firms with higher AI fund ownership. Establishing this comprehensive empirical

pathway–from AI adoption by funds, through altered market-level price discovery, to shifts in
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corporate capital allocation–constitutes a distinct and novel contribution to understanding

the full impact of AI in financial markets.

2.3 The Real Effects of Financial Markets and Corporate Short-

termism

A substantial literature examines how stock price informativeness affects corporate decision-

making. Chen et al. (2007) demonstrate that firms’ investment decisions are more sensitive

to stock prices when those prices contain more private information. This sensitivity arises

because managers learn from the information aggregated in stock prices when making in-

vestment decisions (Bond et al., 2012).

However, the usefulness of stock prices as signals for investment depends on whether

they reflect long-term fundamental value. A growing body of research examines how short-

termism in financial markets may distort corporate decision-making. Bushee (2001) finds

that high levels of ownership by transient institutional investors are associated with manage-

rial myopia. Similarly, Cremers et al. (2020) document that shorter investor horizons lead

to reduced long-term investments by firms.

These concerns about short-termism have gained prominence in policy discussions (Stein,

1989; Bolton et al., 2006). Recent work by Asker et al. (2015) and Dow et al. (2024)

provides evidence that short-term pressure from financial markets can lead to suboptimal

investment decisions, particularly regarding long-term, intangible investments such as R&D

and organizational capital.

2.4 Hypothesis Development

Building on the theoretical foundations and empirical evidence presented above, we develop

three interconnected hypotheses that examine the effects of AI adoption on information

processing horizons, price informativeness, and corporate investment decisions.
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Hypothesis 1: AI Adoption and Information Horizon

We hypothesize that AI adoption by mutual funds leads to an increase in short-termism

in their information processing. Specifically:

H1: After adopting AI technology, mutual funds exhibit increased short-termism in their

information processing, characterized by an increased correlation of funds’ trades with near-

term earnings and a weaker association with long-term earnings.

This hypothesis is based on several theoretical mechanisms. First, AI systems excel at

processing large volumes of (alternative) data sources (e.g., satellite imagery, credit card

transactions, and social media) that provide timely insights about near-term business per-

formance (Dessaint et al., 2024; Katona et al., 2025). These data sources typically yield

fast-moving signals that are particularly valuable for short-term forecasting, enabling mu-

tual funds to detect transient anomalies and exploit temporary market inefficiencies with

great speed and precision. As such, AI adoption is expected to significantly improve mutual

funds’ capabilities in capturing and reacting to near-term informational cues.

Second, qualitative factors such as management quality, competitive dynamics, and po-

tential structural shifts play crucial roles in long-term forecasting. Analyses of these factors

often require causal reasoning, scenario analysis, and adapting to regime changes–tasks where

current AI technologies face significant limitations (?Liu, 2022; Cao et al., 2024; Boyacı et al.,

2024). Consistent with this notion, ? observe that ”So far, AI methods have not been feasible

for long-term investing due to the difficulty of creating a suitable knowledge base for invest-

ing” and the absence of sufficient training data from which machine learning algorithms

could learn the relevant knowledge for valuation.

Third, and perhaps most importantly, information-processing attention is scarce and

must be optimally allocated (Kacperczyk et al., 2016). If AI adoption significantly reduces

the marginal cost of processing short-term information but offers less improvement for long-

term analysis, fund managers face incentives to reallocate their limited time and attention

toward short-term signals at the expense of long-term information acquisition.
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Hypothesis 2: AI Fund Ownership and Stock Price Informativeness

Building on the first hypothesis, we predict that the shift in information processing

horizons among AI-adopting funds will affect the informational content of stock prices:

H2: Higher AI fund ownership leads to increased stock price informativeness about short-

term earnings but decreased informativeness about long-term earnings.

This hypothesis follows from the role of institutional investors in price formation. When

mutual funds trade based on their private information, they incorporate this information

into stock prices (Grossman and Stiglitz, 1980). If AI adoption shifts funds’ information

advantage toward short-term forecasting, as predicted in H1, this would alter the temporal

distribution of information reflected in prices.

The theoretical work of Verrecchia (1982) and Goldstein and Yang (2019) supports this

mechanism, showing that the composition of informed traders’ information sets directly

affects the informational content of prices. If AI-adopting funds focus more on short-term

signals, stock prices would become more informative about near-term fundamentals but

potentially less informative about long-term performance.

Hypothesis 3: AI Fund Ownership and Corporate Investment Efficiency

Our final hypothesis connects the changes in price informativeness to real corporate

decisions:

H3: Higher AI fund ownership leads to decreased sensitivity of corporate investment to

Tobin’s Q.

This hypothesis builds on the ”active informant” role of financial markets in guiding real

economic decisions. Stock prices aggregate diverse information about firms’ prospects, pro-

viding signals that inform managerial decision-making. Chen et al. (2007) demonstrate that

investment-Q sensitivity is significantly higher when stock prices contain more information

that is new to managers.

If AI fund ownership reduces the long-term informativeness of stock prices as predicted

in H2, these prices become less valuable signals for long-term investment decisions. Conse-
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quently, the sensitivity of investment to Q would decrease, if managers find stock prices less

informative about the long-term payoffs of their investments.4

There are, however, several counterarguments that might limit or reverse the above hy-

pothesized effects. AI tools could potentially complement human analysis, freeing up fund

managers’ time from routine data processing tasks and allowing them to focus more on long-

term strategic analysis. Furthermore, as AI capabilities continue to advance, they may even-

tually overcome current limitations in causal reasoning and long-term forecasting. Finally,

sophisticated fund managers might recognize the importance of maintaining long-term infor-

mation advantages and deliberately ensure balanced attention across different time horizons.

If these mechanisms hold, then AI adoption may not reduce–but instead enhance–mutual

funds’ willingness to process long-horizon information. We might observe improved price

informativeness not only in the near term but also across extended horizons.

Further, even in cases where AI funds exhibit a stronger orientation toward short-term

signals, heterogeneity in the equity market may still preserve overall price informativeness.

In particular, if various market participants specialize in different information horizons, the

market as a whole might maintain balanced informativeness, notwithstanding shifts among

individual investor groups. In addition, even if the composition of information embedded

in market prices gradually shifts toward the short term, corporate managers may not im-

mediately perceive subtle changes in the horizon structure of price informativeness, thus

leading them to maintain their reliance on stock price signals even as their reduced useful-

ness for long-term decision-making. Therefore, investment-Q sensitivity may persist despite

a structural reallocation of attention among investors.

Given these competing mechanisms, whether AI adoption by mutual funds reduces long-

term information acquisition, compromises stock price informativeness about long-term fun-

4It’s worth noting that decreased investment-q sensitivity, while indicating that stock prices have become
less useful guides for long-term investment decisions, does not necessarily imply reduced investment efficiency.
Sophisticated managers might recognize the shift in the informational content of prices and appropriately
adjust their decision-making processes, relying more on internal information and alternative sources of long-
term insights rather than market signals. This adaptive response could help maintain investment efficiency
despite changes in stock price informativeness.

11



damentals, and diminishes the usefulness of stock price signals for corporate investment

decisions remains compelling empirical questions. We acknowledge these competing theo-

retical forces and allow the empirical evidence to reveal which mechanisms dominate. By

testing these hypotheses, we aim to provide new insights into whether AI-adoption by mutual

funds has unintended consequences in private information acquisition and the informational

and functional efficiency of market prices.

3 Data and Measurement

3.1 Sample and Data

We begin by obtaining mutual fund groups’ Central Index Keys (CIKs) from the CRSP

CIK Map file. The CIK serves as a unique identifier for fund groups. Next, we use these

CIKs to download fund-specific summary prospectuses (filing type 497-K) for U.S. mutual

funds filed between 2010 and 2023 from the SEC’s EDGAR database.5 Using the CIK

and Series ID, we are able to link each 497-K file to the CRSP Survivorship Bias Free

Mutual Fund Database. Subsequently, we match the mutual funds to the CRSP-USPTO

link table provided by Stoffman et al. (2022), using the permco code in CRSP. For mutual

funds without permco code, we supplement the patent information by searching the names

of mutual funds and their advisory firms in the USPTO using a Python script. Further, we

collect the biographical information of mutual fund management teams from Morningstar.

We merge these diverse data sources into a unified dataset, which we refer to as the EDGAR-

CRSP-USPTO-Morningstar-based sample.

We next use the WRDS MFLINKS file to merge the EDGAR-CRSP-USPTO-Morningstar-

based sample with quarterly institutional equity holdings from the Thomson-Reuters mutual

fund holdings (S12) database. The database contains quarter-end security holding informa-

tion for all registered mutual funds that report their holdings to the U.S. Securities and

5The 497K filings are available in EDGAR system only from 2010 onward.
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Exchange Commission. Since we focus our analysis on U.S. active equity funds, for which

the holdings data are most complete and reliable, we remove index, annuity, ETF, money

market, and bond funds through either the CRSP flag or strings in the fund name.6 We

also require 80% of assets under management to be in common stocks. To mitigate poten-

tial incubation bias, we remove observations where the observation year predates the fund’s

starting year or the fund name is not provided (Evans, 2010). We additionally remove in-

ternational funds from countries that are not in the U.S., and finally, we exclude funds with

a total net asset value (TNA) of less than $10 million. Finally, we obtain our stock return

data from CRSP, accounting data from Compustat, and analyst data from I/B/E/S. We

require that the observations in our sample have no missing values in the future one-quarter

ahead earnings. Our final sample consists of 2,415 U.S. active equity mutual funds and 7,688

distinct stocks.

3.2 Main Variable Construction

3.2.1 Identifying AI Funds

We develop a comprehensive approach that identifies AI-adopting funds through three di-

mensions:

AIFundf,t = I[PISf,t] ∨ I[Patf,t] ∨ I[Expf,t] (1)

where I[·] is an indicator function. I[PIS] equals one if the fund explicitly mentions AI

technologies in Section PIS (Principal Investment Strategies) in the 497K filings, and zero

otherwise. I[Pat] equals one if the fund has AI-related patents, and zero otherwise. I[Exp]

equals one if the fund’s management team possesses relevant expertise in the AI area, and

zero otherwise. The economic implication of Eq. (1) is that we will classify a fund as an AI

6We remove funds which contain any of the following strings in their name: ’Index’, ’Idx’, ’Indx’, ’500’,
’600’, ’1000’, ’1500’, ’2000’, ’3000’, ’5000’, ’S&P’, ’Dow’, ’DJ’, ’Dow Jones’, ’Nasdaq’, ’Barra’, ’Powershares’,
’Wilshire’, ’Russell’, ’StreetTRACKS’, ’nyse’, ’spdr’, ’Holdrs’, ’ishares’, ’ETF’, ’Exchange-Traded Fund’,
’Exchange Traded Fund’, ’Mkt’, ’Market’, ’Currency’, ’Composite’, ’bond’.
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fund if it meets at least one of these conditions7.

3.2.2 Measuring The Short-Termism of Mutual Funds

We identify a mutual fund’s short-termism by examining the fundamental informativeness of

its trading activity across different forecasting horizons. Conceptually, short-termism reflects

the fund’s strategic allocation of attention and resources toward shorter-horizon signals.

Thus, a fund is considered to exhibit short-termism if its trading activity is more strongly

associated with short-term fundamentals while showing weaker association with long-term

fundamentals. Empirically, we model this relationship with the following regression:

EAj,t+h = α + β1Tradingf,j,t + β2EAj,t + γXf,j,t + ϕfj + λt + ϵf,j,t+h (2)

where EAj,t+h is the future realized earnings of firm j in period t+h, scaled by total assets

in period t. We use earnings before interest and taxes (EBIT) to proxy the firm’s earnings.8

The term Tradingf,j,t represents the split-adjusted trading value (Thomson Reuters S12 item

CHANGE*PRC) of fund f for stock j in period t, scaled by the total portfolio value of fund

f in period t−1. We include current earnings (EAj,t) as a control in the model. This allows

us to isolate trading activity driven by expectations of future fundamental performance

from trading that might simply reflect reactions to contemporaneous or recently realized

earnings. Our empirical analysis examines 12 different forecasting horizons, spanning three

years, denoted as: h = 1 − 12 quarters. If a fund becomes more short-term oriented,

its trading would have an improved association with future short-term earnings while a

decreased association with future long-term earnings, leading to a larger coefficient β1 on

Tradingf,j,t for the short-term horizon but a smaller one for the long-term horizon.

7This multifaceted approach allows us to identify AI funds that might otherwise be overlooked. For
instance, some funds may not explicitly mention AI technologies in their publicly stated investment strategies,
even though they hold AI-related patents or their management team has expertise in AI.

8For robustness checks, we also use earnings before interest, taxes, depreciation, and amortization
(EBITDA) and net income (NI) as alternative measures for the stock’s earnings. The results are similar
both qualitatively and quantitatively.
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3.3 Summary Statistics

Figure 1 illustrates the evolution of AI funds. Panel A shows that the number of AI funds

has risen from almost zero in 2010 to 333 in year 2023, representing more than 23% of the

population. Panel B plots the amount of assets under management (AUM), showing that

AUMs of AI funds also increase substantially over the sample period. In 2023, AI funds

manage total assets of approximately $3,600 billion, representing roughly 13% of the total

AUM of the industry, compared to only about 5% prior to 2010.

Table 1 presents summary statistics for the main variables in the baseline analysis. The

mean value of the fund-stock-quarter-level variable Trading is about 0.1%, however, the dis-

persion of Trading is large (standard deviation of 0.3%). For the fund-quarter level variable,

AI funds account for an average of 12.6% of all funds, and the funds in the sample manage

about $596.1 million in assets, with an average age of over 12 years (51.1 quarters).

In addition, the funds in the sample hold an average of 119.9 stocks and adjust about

62% of their portfolios over a quarter. For the stock-quarter-level variables, the average

percentage of outstanding shares held by AI funds in our sample is about 3.2%, the stock

has an average asset size of approximately $11.6 billion, a financial leverage ratio of 57.6%,

an ROE of 1.3%, a book-to-market ratio of 2.439, a quarterly sales growth rate of 4.1%, and

is tracked by 10.2 analysts.

4 Empirical Results

4.1 Descriptive Results

We begin by showing the bin-scatter relation between current trading activity (Tradingf,j,t)

and stocks’ future realized earnings across different time horizons (EAj,t+h), separately for

AI funds and traditional funds. Figure 2 shows that in the short-run panels (Horizons

1–5), the slope of the fitted line for AI funds is consistently steeper relative to that of
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traditional funds. However, as the time horizon extends beyond six quarters (Horizons 7–12),

this pattern reverses. The association between active trading and future realized earnings

becomes weaker–and in some cases negative–for AI funds, while it remains relatively stable

for traditional funds.

We further directly illustrate the difference in information processing horizons between

AI funds and traditional funds. To do so, we first de-mean all variables by fund-stock pair

to remove the fund-stock fixed effects over the sample period and then estimate a cross-

sectional regression of future h-period earnings on Trading in each quarter (as shown in Eq.

(2)), separately for AI funds and traditional funds. We visualize the quarterly slopes of AI

funds and traditional funds over different forecasting horizons in Figure 3. The results align

with Figure 2: AI funds exhibit systematically higher short-term information processing per-

formance than traditional funds, particularly over horizons of one to five quarters. However,

as the forecast horizon extends beyond six quarters, the information processing performance

of AI funds diminishes, and their slopes become progressively lower compared to those of

traditional funds.

4.2 Regression Analysis of AI Adoption and Mutual Fund Short-

Termism

To formally test whether the short-termism of AI funds is statistically significant, we estimate

the following ordinary least squares (OLS) regression models:

EAj,t+h = α + β1AIFundf,t × Tradingf,j,t + β2AIFundf,t + β3Tradingf,j,t + β4EAj,t

+ β5StockControlj,t + β6FundControlf,t + ϕfj + λt + ϵf,j,t+h

(3)

where AIFundf,t is a dummy variable that equals one if the mutual fund f is labeled

as AI-adopted fund in quarter t. Variables EAj,t+h and Tradingf,j,t are defined the same as

before. StockControlj,t is a vector of stock-quarter level control variables intended to capture
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firms’ fundamental characteristics and information environments (Zhu, 2019), including Size,

Lev, Roe, Growth, BTM, and Analysts. FundControlf,t is a vector of fund-quarter level

control variables that account for fund-specific management behavior and style (Jiang et al.,

2007; Bonelli and Foucault, 2024), including Tna, Age, Nb. Stocks and Turnover. We also

include the fund-stock fixed effects ϕfj, and year-quarter fixed effects λt
9. Standard errors

are double-clustered at the fund and stock levels to account for potential cross-sectional and

temporal correlation in the residuals.

The coefficient of interest is β1, which measures the extent to which a fund’s information

processing horizon in a given stock is affected by the AI adoption. Our first hypothesis, H1,

predicts that AI adoption will lead to increased short-termism in mutual funds, implying

that β1 will change from positive to negative as forecasting horizon increases.

Table 2 reports the estimation results for Eq. (3). Panel A presents regressions that

include only fund-stock and year-quarter fixed effects, while Panel B augments the model

with both fund-level and stock-level control variables. Across all specifications, the results

consistently indicate the presence of short-termism among AI funds. Specifically, the coeffi-

cients on AIFund×Trading are all positive and significant in the short term (h = 1−5), but

negative and partially significant in the long run (h = 9− 12). These findings are consistent

with the notion that AI adoption enhances funds’ preference to exploit short-term informa-

tional advantages, but may simultaneously exacerbate their performance in processing upon

long-term fundamental information.

4.3 Addressing Endogeneity

4.3.1 Instrumental Variable Approach

While our baseline findings suggest a positive association between AI adoption and mutual

fund short-termism, concerns may persist that fixed effects alone cannot fully address endo-

geneity. To better establish the causal relationship, we first adopt an instrumental variable

9Results are robust and similar when we use fund- and stock fixed effects
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approach by utilizing two plausibly exogenous instrumental variables that affect the ten-

dency of mutual funds to adopt AI technologies. This approach allows us to isolate the

causal impact of AI technologies on investment horizon choices.

First, we follow Babina et al. (2024) to instrument AIFund with:

AI Talent Exposuref =
∑
u

Manager2010q1f,u × AIstrongu (4)

where Manager2010q1f,u is the managers in fund f in 2010Q1 who graduated from university

u, and AIstrongu equals one if university u is identified as an AI-strong university based on

the number of AI researchers prior to 2010Q1.10

This IV exploits the fact that AI talent scarcity constrains adoption (Acemoglu et al.,

2022; Babina et al., 2024; Law and Shen, 2024). Funds with stronger alumni ties to AI-strong

universities in 2010Q1 were better positioned to recruit AI talent in the 2010s, independent

of their inherent short-termism.

Our second instrumental variable is the geographic distance from the mutual funds to

the nearest AI hubs. To construct this variable, we utilize the list of AI hubs compiled

by CSET (Center for Security and Emerging Technology) and the 5-digit zip codes of fund

companies provided by CRSP.11 More specifically, we use Python’s geopy library to convert

the 5-digit zip codes of mutual funds into latitude and longitude, and then we calculate

10Following Babina et al. (2024), we define a university as AI strong if it meets one of the following two
criteria for at least one year prior to 2010: either (i) the number of AI researchers ranks in the top 5% of the
distribution of all universities for the given year; or (ii) the number of AI researchers ranks in the top 10%
of the distribution of all universities for the given year and the percentage of AI researchers share (number
of AI researchers divided by the number of other researchers) ranks in the top 5% of the distribution of
all universities for the given year. An AI researcher is defined as a researcher who has published papers in
AI-related journals and conference proceedings.

11CSET defines AI hubs based on the following criteria: (a) AI top universities. CSET compiles a list
of the top 30 AI and Computer Science programs in the nation using US News and World Report’s top
20 AI programs list, supplemented with CS Rankings’ top AI computer science programs list. (b) AI
companies. CSET identifies AI companies through a query on all companies in Crunchbase and Refinitiv’s
databases. The query utilized a keyword search within each company’s description. (c) AI talents. CSET
identifies professionals with AI-related skills through a LinkedIn Talent Insights Talent Pool Report. (d) AI
investments. CSET views only U.S.- and Chines based investors funding U.S.-based AI companies through
funding rounds and company acquisitions, and matches AI companies to investments in Crunchbase through
the companies’ Crunchbase URLs.
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the distances between mutual funds and the closest AI hubs based on Vincenty’s reference

ellipsoid formula.

The geographic proximity instrumental variable offers intuitive appeal on both theoretical

and exclusionary grounds. Proximity to AI hubs reduces adoption barriers by facilitating

knowledge spillovers, collaborative networks, and access to specialized talent pools (e.g.,

research institutes, AI startups, and technical vendors). These channels lower information

acquisition costs and accelerate technology diffusion among nearby funds (Hunt et al., 2024),

making AI adoption more likely for funds near hubs. Crucially, the instrument satisfies the

exclusion restriction: AI hub locations are determined by regional infrastructure, academic

institutions, and agglomeration economies–factors orthogonal to fund-specific attributes like

investment horizons or managerial styles. Consequently, geographic distance is unlikely to

directly influence funds’ short-termism beyond its effect through AI adoption.

We implement a three-stage probit-2SLS procedure to deal with the binary nature of our

endogenous variable AIFund (Adams et al., 2009; Angrist and Pischke, 2009; Deng et al.,

2022). Specifically, (a) in the first probit estimation stage, the adoption of AI technologies

is determined by funds’ ex-ante exposure to AI talents (geographic distance to the nearest

AI hubs, or both) and other fund-level variables. (b) Then, we use the predicted proba-

bility ̂AIFund as an instrument in the first stage of the 2SLS procedure. (c) Finally, the

second-stage 2SLS regression estimates the effect of AI adoption on future h-period earnings

forecasting performance, using the fitted values from the first-stage 2SLS along with control

variables.

Table 3 reports the three-stage probit-2SLS results. Consistent with expectations, Panel

A shows a statistically significant positive coefficient (1% level) on AI Talent Exposure (Col-

umn 1), confirming that prior ties to AI-strong universities increase AI adoption likelihood.

Similarly, the negative and significant coefficient on Distance to AI Hubs (Column 3) supports

the role of geographic proximity in facilitating adoption. Strong first-stage statistics (probit

Chi-square, 2SLS F-statistics) alleviate weak instrument concerns. When both instruments
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are used jointly (Column 5), coefficients retain expected signs and significance. The Sargan

test (Sargan, 1958) fails to reject the null hypothesis of valid instruments, supporting their

joint exogeneity.

Panels B, C, and D of Table 3 present the second-stage 2SLS estimation results. In

particular, Panel B uses AI Talent Exposure as the sole instrument; Panel C uses Distance

to AI Hubs as the sole instrument; and Panel D uses both instruments jointly. Across all

specifications, the findings are consistent: AI adoption significantly improves the relation

between mutual fund trading activity and short-term fundamentals and impairs its associ-

ation with long-term fundamentals. Collectively, the three-stage probit-2SLS results lend

strong support to our baseline findings. The results suggest that the observed short-termism

in mutual funds is indeed causally driven by the adoption of AI technologies, rather than

by omitted variables or selection effects. Our university- and geography-based IVs provide

a credible empirical basis for establishing the causal impact of AI adoption on mutual fund

short-termism.

4.3.2 Quasi-natural Experiments

To further establish causality, we exploit plausibly exogenous shocks to AI effectiveness. This

setting mitigates endogeneity by leveraging variation in AI effectiveness driven externally,

unrelated to fund-specific choices.

The Release of the Transformer Architecture.

The Transformer (Vaswani et al., 2017) revolutionized AI with its multi-head self-attention

mechanism, enabling efficient modeling of global dependencies in large-scale datasets. Unlike

prior architectures (e.g., LSTM, CNN), it eliminated recurrent structures, allowing parallel

processing and superior scalability. This breakthrough rapidly became foundational for state-

of-the-art models (e.g., BERT, GPT), accelerating AI adoption across industries. Crucially,

its development was driven by academic research–not fund-specific decisions–providing an

exogenous shock to adoption incentives. Furthermore, given its profound impact on the per-
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formance frontier of AI applications, Transformer’s release would exogenously improve the

technical capabilities of AI-adopting funds. This plausibly exogenous variation establishes

an ideal setting to identify the causal effect of AI adoption on mutual fund short-termism.

If it is the adoption of AI technology that leads to the exacerbated short-termism in mu-

tual fund information acquisition, with the enhanced technological effectiveness brought by

Transformer, AI funds’ short-termism would become worse.

We test this prediction by implementing a difference-in-difference (DiD) regression frame-

work. The DiD sample period spans from 2016Q3 to 2018Q2, covering one year before and

after the Transformer shock. The DiD regression is specified as follows:

EAj,t+h = α + β1AIFund2017Q3
f × TFt × Tradingf,j,t + β2AIFund2017Q3

f × TFt

+ β3AIFund2017Q3
f × Tradingf,j,t + β4TFt × Tradingf,j,t + β5Tradingf,j,t

+ β6EAj,t + γStockControlj,t + δFundControlf,t + ϕfj + λt + ϵf,j,t+h

(5)

where AIFund2017Q3
f is a dummy variable that takes a value of one if mutual funds are

labeled as AI funds in 2017Q3, and zero otherwise. TF is a dummy variable that takes a

value of one after the Transformer model was released (2017Q3 onwards), and is set to zero

from 2016Q3 to 2017Q2. Other variables are defined in Eq. (3). As discussed above, if

it is the adoption and use of AI technology that leads to the exacerbated short-termism in

mutual fund information acquisition, we would expect AI funds’ short-termism to become

worse after the invention of the Transformer, leading to a positive coefficient β1 for the short

horizon while a negative one for long horizons.

Table 4 presents the DiD estimation results based on the Transformer event. Consistent

with our hypothesis, we find that β1 is positive for all the short-term horizon and the coeffi-

cients are statistically significant for horizon= 2 and 3. However, over longer horizons, this

short-term advantage reverses: coefficient turns to negative for horizons between 9 and 12

and statistically negative for the tenth and twelfth quarter horizons. These findings provide

strong evidence that the advances of AI technologies enhance the association between fund’s
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active trading and short-term earnings but reduce its’ association with long-term earnings.

The Staggered Introduction of The Satellite Imaging Data.

As a second quasi-natural experiment, we leverage the staggered introduction of satellite

imaging data coverage across different geographical areas and time periods. Satellite imagery

has become an increasingly important input for AI-powered investment strategies, as it pro-

vides real-time insights into economic activity that can be processed using machine learning

algorithms (Katona et al., 2025). However, the availability of high-quality satellite data for

investment purposes has expanded gradually and varies geographically, creating plausibly

exogenous variation in AI effectiveness across firms and time.

We construct our identification strategy around the staggered rollout of commercial satel-

lite data coverage. Using data from major satellite imagery providers, we identify when

different geographical regions first gained access to high-frequency, high-resolution satellite

coverage suitable for financial analysis. This information allows us to create a treatment

indicator that varies both cross-sectionally (by firm headquarters location) and over time

(by the timing of satellite coverage initiation).

We implement the following difference-in-differences specification:

EAj,t+h = α + β1AIFundf,t × SatCoveragej,t × Tradingf,j,t

+ β2AIFundf,t × SatCoveragej,t + β3AIFundf,t × Tradingf,j,t

+ β4SatCoveragej,t × Tradingf,j,t + β5Tradingf,j,t + β6EAj,t

+ γStockControlj,t + δFundControlf,t + ϕfj + λt + ϵf,j,t+h

(6)

where SatCoveragej,t is an indicator variable that equals one if firm j’s headquarters

location has satellite coverage available for investment analysis in quarter t, and zero oth-

erwise. The coefficient of interest is β1, which captures the differential impact on AI funds’

information processing when satellite data becomes available for firms they analyze.

The key identifying assumption is that the timing of satellite coverage rollout is un-

correlated with fund-specific or firm-specific characteristics that would independently affect

22



information processing horizons. This assumption is plausible because satellite coverage ex-

pansion is primarily driven by technical and commercial considerations of satellite operators,

rather than characteristics of individual mutual funds or their portfolio companies.

Our results, shown in Table 4 Panel B, demonstrate that the introduction of satellite

coverage enhances AI funds’ short-term information processing capabilities relative to tra-

ditional funds. The coefficient on the triple interaction AIFund× SatCoverage× Trading

is positive and significant for short-term horizons (quarters 1-5) but becomes negative for

longer horizons (quarters 9-12). This pattern is consistent with our main hypothesis that

improved AI capabilities exacerbate short-termism in information processing, as satellite

data primarily provides insights relevant for near-term business performance rather than

long-term fundamental value.

4.4 AI Investors and Stock Price Informativeness

In this section, we test our second hypothesis on whether the increased short-termism brought

by AI-adoption in the mutual fund industries affects the price formation and efficiency on

the capital markets. Since stock prices are determined by the investors’ expectations of a

firm’s future earnings through their trading activities, we predict that stock prices will also

become short-term focused, i.e. they will become more informative about short-term future

fundamentals but less so about long-term future fundamentals.

To empirically assess this prediction, we first follow Bai et al. (2016) and measure stock-

level price informativeness as the extent to which current market prices reflect the future

earnings of the stock, where the future horizon is 1-12 quarters, a high predictive power means

that the stock price incorporates more of the future earnings information. Specifically, We

run the following regression model to test the hypothesis:

EAj,t+h = α + β1AIownj,t × logMAj,t + β2AIownj,t + β3 logMAj,t + β4EAj,t

+ γStockControlj,t + ϕj + λt + ϵj,t+h

(7)
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where logMAj,t indicates log (market value (stock price × common shares) of stock j

in period t scaled by total assets of stock j in period t). Since this is a stock-quarter-level

analysis, we construct the variable AIown by calculating the percentage of AI investors’

holdings in stocks.12 We also add stock-quarter-level control variables, stock fixed effects,

and year-quarter fixed effects to the model. The standard errors are double clustered at the

stock and year-quarter level. The coefficient of interest is β1, which captures the variation

in price informativeness brought by the ownership by AI-adopting funds.

Additionally, we utilize the relation between current stock returns and future earnings

(future earnings response coefficient, or FERC) as an alternative measure of price informa-

tiveness (Collins et al., 1994; Lundholm and Myers, 2002; Choi et al., 2019).

Returnj,t = α +
12∑
h=1

βhAIownj,t × EAj,t+h + controls + ϕj + λt + ϵj,t (8)

where Returnj,t is the quarterly log returns for stock j. The greater AI investors’ per-

formance in estimating earnings in period t + h, the larger the FERC (i.e., β1), indicating

that the AI investors make current stock returns more informative about earnings in period

t + h.

The OLS estimation results for Eq. (6) are reported in Panel A of Table 5. We find that

the coefficient of AIownj,t × logMAj,t is positive and statistically significant for short-term

earnings (β1 = 0.021; t-stats=2.87 in column (1)), whereas it is negative and statistically

significant for long-term earnings (β1 = −0.020; t-stats=-1.77 in column (11)). Similarly,

for the estimation results of Eq. (7) in Table 6, the coefficient of AIownj,t × EAj,t+4 is

significantly positive for current stock returns (β1 = 1.284; t-stats=2.43), while the coefficient

of AIownj,t × EAj,t+9 is significantly negative (β1 = −0.967; t-stats=2.32). These results

align with the documented short-termism of AI funds in Table 2, suggesting that the bias

12We also include in our price informativeness and investment-Q sensitivity tests a second measure of AI
investors ownership – the number of AI funds that own the stock. This alternative measure captures the
breadth of AI fund participation and reduces the influence of extreme values driven by a few large fund
positions, the results are reported in the robustness tests, and our results are robust.
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in AI investors’ short-termism leads to stock prices incorporating more short-term earnings

information and less long-term earnings information.

To further establish causality, we aggregate the AI Talent Exposure and Distance to AI

hubs for each fund to the stock-quarter level to measure the overall exposure of AI investors

to AI-trained graduates and average distance to the nearest AI hubs. We then use these

two aggregated variables to instrument AIown. The first-stage regression result shows that

the coefficient of AI Talent Exposure on AIown is positive and statistically significant. This

indicates that investors’ ex ante exposure to AI-trained graduates is strongly correlated

with their adoption of AI technology. Further, the coefficient of Distance to AI hubs on

AIown is negative and significant at the 1% level, suggesting that the closer an investor is

geographically to AI hubs, the more likely she is to be an AI investor. The second-stage 2SLS

results, reported in Panels B of Table 5 and Column (2) of Table 6, confirm our primary

findings: higher AI fund ownership significantly enhances the extent to which stock prices

reflect short-term earnings information, while simultaneously reducing their informativeness

about long-term earnings. These results provide additional causal evidence that the rise of

AI investors’ ownership fundamentally alters the term structure of information impounded

into stock prices.

4.5 AI Investors and Capital Allocation Efficiency

The feedback effect literature suggests that managers use stock prices as a signal when

making long-term investment decision (Hirshleifer, 1958; Chen et al., 2007). However, if

stock prices are dominated by short-term information, they would become less useful for long-

term investment decision making as these decisions are based on the tradeoff between the

cost of investment projects and the present value of their long-term payoffs. Consequently,

decreased stock price informativeness regarding long-term future fundamentals would lead

managers to rely less on the price signals in making their investment decisions. We examine
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this conjecture by testing investment-Q sensitivity:

Investmentj,t+1 = α + β1AIownj,t ×Qj,t + β2AIownj,t + β3Qj,t

+ γStockControlj,t + ϕj + λt + ϵj,t+1

(9)

where the umbrella term Investmentj,t+1 is the investment expenditure of stock j in

period t+ 1, which encapsulates the five different measures: R&D expenditure (RD), capital

expenditure (Capx), R&D and net investment (RDNetInv), R&D and capital expenditure

(RDCapx), and capital expenditure and net investment (CapxNetInv), all scaled by lagged

total assets. Qj,t denotes Tobin’s Q (market value of the firm’s equity plus book value of

assets minus book value of equity, scaled by book value of assets) of stock j in period t. If

managers understand that greater ownership by AI funds reduce the stock price informativ-

ness regarding to long-term fundamentals and therefore rely less on the noisy stock prices in

their investment decisions, we would expect the coefficient β1 to be negative.

We report the regression results of Eq. (8) in Panel A of Table 7. Consistent with the

prediction of hypothesis 3, we find that the estimated coefficients of the interaction term (i.e.

β1) are all negative and significant at less than 1% level. We obtain similar results using 2SLS

estimations, which are reported in Panel B of Table 7. The results are consistent with the

notion that the adoption of AI technology reduce funds’ acquisition of long-term fundamental

information, which in turn reduce the amount of long-term information incorporated into

stock prices, and therefore make them a less useful signal for making long-term investment

decisions.

5 Conclusion

Motivated by the growing integration of AI technologies in mutual fund operations, this paper

examines whether AI adoption induce short-termism in mutual fund information acquisition.

This investigation is grounded in evidence suggesting AI disproportionately reduces the costs
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of short-term information processing, thereby altering how funds allocate effort between

short-term and long-term forecasting tasks.

Our empirical analysis establishes that AI adoption systematically amplifies short-termism

among active mutual fund managers. We document that AI funds exhibit significantly

stronger sensitivity to short-term fundamentals but weaker associations with long-term fun-

damentals. These findings withstand rigorous identification tests, including instrumental

variable approaches leveraging funds’ ex ante exposure to AI talent and geographic proxim-

ity to AI hubs. Crucially, quasi-natural experiments – exploiting the exogenous release of the

Transformer architecture and the staggered introduction of satellite imaging data – confirm

that technological shocks enhancing AI capabilities intensify short-term trading behavior.

Beyond fund-level behavior, we uncover broader market consequences: stocks under high

AI fund ownership exhibit price informativeness distortions, with a greater incorporation

of short-term earnings information at the expense of long-term fundamentals. This horizon

distortion manifests in real economic outcomes, as evidenced by a significant decline in

investment-Tobin’s Q sensitivity among affected firms. This indicates corporate managers

make suboptimal investment decisions when responding to AI-distorted price signals. Our

study contributes the first causal evidence linking AI adoption to investor short-termism

and its market-wide externalities. We bridge technological innovation with asset pricing

dynamics and corporate finance outcomes, revealing how efficiency gains in information

processing might inadvertently distort price efficiency and capital allocation efficiency.
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A Variable Definitions

Variable Definition Data Source

Dependent Variables

EA[t+h] The ratio of the stock’s earnings before inter-
est and taxes (EBIT) in period t+h to total
assets in period t

Compustat

Return Quarterly stock return, Log (closing stock
price in period t/closing stock price in period
t-1)

CRSP

RD[t+1] Ratio of R&D expenditure in period t+1 to
total assets in period t

Compustat

CapEx[t+1] Ratio of capital expenditure in period t+1 to
total assets in period t

Compustat

RD+NetInv[t+1] Ratio of R&D expenditure and change in Net
Property, Plant, and Equipment in period t+1
to total assets in period t

Compustat

RD+CapEx[t+1] Ratio of R&D expenditure and capital expen-
diture in period t+1 to total assets in period
t

Compustat

CapEx+NetInv[t+1] Ratio of capital expenditure and change in Net
Property, Plant, and Equipment in period t+1
to total assets in period t

Compustat

Independent Variables

AIFund A dummy variable that takes a value of one if
the fund is labeled as an AI-adopted mutual
fund, and zero otherwise

EDGAR SEC
497-K filings;
USPTO; Morn-
ingstar; CRSP;
Thomson-Reuters

Continued on next page
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Table A1 – continued from previous page

Variable Definition Data Source

Trading The split-adjusted trading value (Thomson
Reuters S12 item CHANGE*PRC) of fund f
for stock j in period t, scaled by the total port-
folio value of fund f in period t-1

CRSP; Thomson-
Reuters

AI Talent Exposure Mutual funds’ ex-ante exposure to the supply
of AI-trained graduates from universities his-
torically strong in AI

Morningstar;
Babina et al.
(2024)

Distance to AI Hubs The closest distance of the fund company to
AI hubs

CRSP; CSET

AIFund2017Q3 A dummy variable that takes the value of 1 if
the fund is labeled as an AI-adopted mutual
fund in 2017Q3, and zero otherwise

EDGAR SEC
497-K filings;
USPTO; Morn-
ingstar; CRSP;
Thomson-Reuters

TF A dummy variable that takes the value of
1 after the Transformer architecture was re-
leased (2017Q3 onwards) and is set to zero
from 2016Q3 to 2017Q2

/

SatCoverage A dummy variable that takes the value of 1 if
the firm’s headquarters location has satellite
coverage available for investment analysis in
quarter t, and zero otherwise

Satellite imagery
providers

AIown The ratio of the common shares held by AI
funds in period t to total shares outstanding
in period t

EDGAR SEC
497-K filings;
USPTO; Morn-
ingstar; CRSP;
Thomson-Reuters

Log MA Log (The market value of the firm in period t
/ the total assets of the firm in period t)

Compustat

Q (Market value of the firm’s equity + book
value of assets - book value of equity)/book
value of assets

Compustat

Continued on next page
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Table A1 – continued from previous page

Variable Definition Data Source

Control Variables

Size Log (total assets) Compustat

Lev Ratio of total liabilities to total assets Compustat

ROE Ratio of net income to average equity value Compustat

Growth Ratio of change in sales in period t to sales in
period t-1

Compustat

BTM Ratio of book value to market value Compustat

Analysts Number of analysts tracking the stock I/B/E/S

TNA The sum of assets under management across
all share classes of a fund

CRSP

Age Log (current year-quarter - established year-
quarter + 1)

CRSP

Nb. Stocks Log (Number of firms held by the fund) CRSP

Turnover Minimum of aggregated sales or aggregated
purchases of securities, divided by the average
12-month Total Net Assets of the fund

CRSP

Notes: This table provides detailed definitions of all variables used in the empirical analysis. Variables are
grouped into dependent variables, independent variables, and control variables. Data sources include CRSP
(Center for Research in Security Prices), Compustat (quarterly accounting data), Thomson-Reuters
(mutual fund holdings), I/B/E/S (analyst coverage), EDGAR SEC filings (497-K forms), USPTO (patent
data), Morningstar (manager biographical information), and CSET (Center for Security and Emerging
Technology for AI hub locations). The sample period covers 2010Q1 to 2023Q4 and includes 2,415 U.S.
active equity mutual funds holding 7,688 distinct stocks.
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Figure 1: Evolution of AI Fund Adoption Over Time
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Panel B: Assets Under Management

Notes: This figure plots the time series evolution of AI fund adoption from 2010 to 2023. Panel A shows
the number of AI funds and all funds in our sample. Panel B shows the assets under management (AUM)
of AI funds and all funds. AI funds are identified using our comprehensive approach combining textual
analysis of 497-K filings, patent records, and managerial expertise. The sample includes 2,415 U.S. active
equity mutual funds.
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Figure 2: Trading Activity and Future Earnings: Bin-Scatter Analysis

Notes: This figure shows bin-scatter plots relating current trading activity (Tradingf,j,t) to future
realized earnings (EAj,t+h) across different forecasting horizons (1-12 quarters ahead), separately for AI
funds and traditional funds. Trading is the split-adjusted trading value scaled by total portfolio value.
Future earnings are measured as EBIT scaled by total assets. The analysis includes fund-stock and
year-quarter fixed effects. The sample period is 2010-2023.
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Figure 3: Information Processing Performance Across Horizons
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Notes: This figure plots the average coefficients on Tradingf,j,t from quarterly cross-sectional regressions
of future earnings on trading activity, estimated separately for AI funds and traditional funds across
different forecasting horizons (1-12 quarters). Variables are de-meaned by fund-stock pair to remove fixed
effects. The analysis shows AI funds’ superior short-term information processing performance (quarters
1-5) and deteriorating long-term performance (quarters 6-12) relative to traditional funds.
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Table 1: Summary Statistics

Variable N Mean Std Dev P25 P50 P75

Panel A: Fund-Stock-Quarter Level
Trading (%) 3,927,347 0.10 0.30 0.00 0.00 0.10

Panel B: Fund-Quarter Level
AIFund 50,290 0.126 0.332 0 0 0
TNA ($million) 50,290 596.1 1,739.9 48.6 109.7 301.6
Age (quarters) 50,290 51.1 30.9 28 47 67
Nb. Stocks 50,290 119.9 241.4 32 54 97
Turnover 50,290 0.621 0.598 0.250 0.450 0.770

Panel C: Stock-Quarter Level
AIown (%) 180,935 3.2 6.7 0 0.4 3.1
EA[t] 181,009 1.9 4.7 0.4 1.7 3.4
Size ($billion) 181,009 11.6 30.5 0.5 1.9 6.8
Leverage 181,009 0.576 0.257 0.389 0.571 0.766
ROE 181,009 1.3 13.9 -0.2 2.2 4.4
Growth 181,009 4.1 22.5 -4.4 2.1 9.4
BTM 181,009 2.439 3.369 0.576 1.155 2.484
Analysts 181,009 10.2 8.0 4 8 14
MA 181,009 1.526 4.678 0.402 0.866 1.735
Return 181,008 0.000 0.253 -0.099 0.016 0.123
Tobin’s Q 181,009 2.112 5.103 1.047 1.412 2.237
R&D[t+1] 181,009 0.9 2.3 0.0 0.0 0.7
CapEx[t+1] 177,915 2.3 3.8 0.2 1.1 2.8
R&D+NetInv[t+1] 171,369 1.5 4.2 0.0 0.4 2.1
R&D+CapEx[t+1] 177,915 3.3 4.5 0.4 1.9 4.5
CapEx+NetInv[t+1] 168,783 3.0 5.8 0.2 1.2 3.6

Notes: This table presents summary statistics for the main variables. The sample includes 2,415 U.S.
active equity mutual funds holding 7,688 distinct stocks from 2010Q1 to 2023Q4. Panel A shows
fund-stock-quarter level variables, Panel B shows fund-quarter level variables, and Panel C shows
stock-quarter level variables. Trading is split-adjusted trading value scaled by total portfolio value. AIFund
indicates AI-adopting funds. AIown is percentage of shares held by AI funds. EA[t] represents current
earnings before interest and taxes, scaled by total assets. Size is total assets in billions. MA is
market-to-assets ratio. Investment variables are scaled by lagged total assets and expressed in percentage
points. All variables are defined in Appendix A.
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Table 2: AI Adoption and Mutual Fund Short-Termism
Dependent Variable: EAj,t+h

Horizon 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: No Controls

AIFund× Trading 0.035** 0.043*** 0.056*** 0.015 0.033* 0.023 0.006 -0.017 -0.059*** -0.072*** -0.041 -0.053*
(2.40) (2.74) (3.42) (0.89) (1.82) (1.19) (0.31) (-0.81) (-2.69) (-2.95) (-1.61) (-1.88)

Fund-stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls No No No No No No No No No No No No
Observations (millions) 3.93 3.90 3.87 3.79 3.66 3.50 3.34 3.18 3.04 2.88 2.73 2.57
Adj. R-squared 0.635 0.619 0.618 0.633 0.613 0.610 0.610 0.616 0.613 0.613 0.613 0.621

Panel B: With Controls

AIFund× Trading 0.033** 0.039** 0.051*** 0.013 0.030* 0.016 -0.000 -0.023 -0.065*** -0.080*** -0.051** -0.056**
(2.30) (2.52) (3.17) (0.79) (1.65) (0.81) (-0.01) (-1.10) (-2.93) (-3.28) (-2.05) (-2.02)

Fund-stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Fund & Stock Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations (millions) 3.93 3.90 3.87 3.79 3.66 3.50 3.34 3.18 3.04 2.88 2.73 2.57
Adj. R-squared 0.641 0.626 0.629 0.644 0.622 0.618 0.620 0.625 0.619 0.620 0.623 0.628

Notes: This table presents OLS estimates of the effect of AI adoption on mutual fund information processing horizons. The dependent variable EAj,t+h is earnings before
interest and taxes h quarters ahead, scaled by total assets. AIFund is an indicator for AI-adopting funds. Trading is split-adjusted trading value scaled by total portfolio
value. Panel A includes fund-stock and time fixed effects only. Panel B adds fund-level controls (log TNA, log age, log number of stocks, turnover) and stock-level controls
(current earnings, log size, leverage, ROE, growth, book-to-market, analyst coverage). Standard errors are double-clustered at the fund and stock levels. t-statistics are in
parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 3: Instrumental Variable Analysis
Panel A: First Stage Results

AI Talent Exposure Distance to AI Hubs Both Instruments

Variable Probit 2SLS-1st Probit 2SLS-1st Probit 2SLS-1st

AI Talent Exposure 0.692*** 0.995*** 0.685*** 0.992***
(42.74) (40.91) (41.97) (45.23)

Distance to AI Hubs -0.360*** 1.324*** -0.329***
(-17.27) (25.10) (-15.67)

F-statistic 413.8 176.5 479.9
Chi-square 4361.2 2553.2 4495.1
Sargan test 0.101

Panel B: Second Stage Results

Horizon (quarters) 1 2 3 4 5 6 7 8 9 10 11 12

Using AI Talent Exposure
AIFund × Trading 0.128*** 0.138*** 0.260*** 0.130*** 0.256*** 0.170*** 0.225*** 0.042 -0.087 -0.255*** -0.120 -0.147*

(2.92) (2.90) (5.22) (2.59) (4.64) (2.91) (3.68) (0.65) (-1.26) (-3.40) (-1.49) (-1.67)

Panel C: Second Stage Results

Using Distance to AI Hubs
AIFund × Trading 0.220*** 0.272*** 0.342*** 0.190*** 0.271*** 0.187*** 0.185*** 0.009 -0.085 -0.327*** -0.211** -0.206**

(4.99) (5.70) (6.88) (3.79) (4.94) (3.17) (2.95) (0.13) (-1.18) (-4.12) (-2.44) (-2.13)

Panel D: Second Stage Results

Using Both Instruments
AIFund × Trading 0.119*** 0.119** 0.241*** 0.125** 0.238*** 0.155*** 0.206*** 0.000 -0.142** -0.290*** -0.155** -0.173**

(2.74) (2.54) (4.91) (2.52) (4.37) (2.67) (3.41) (0.01) (-2.07) (-3.94) (-1.97) (-2.01)

Notes: This table reports instrumental variable results using a three-stage probit-2SLS procedure. Panel A shows first-stage results where AI adoption is predicted using AI talent exposure (ex-ante
fund exposure to AI-trained university graduates) and/or distance to AI hubs. Panels B, C, and D present second-stage 2SLS results for selected horizons using different instrument combinations. AI
Talent Exposure measures funds’ connections to AI-strong universities prior to 2010. Distance to AI Hubs is the geographic distance from fund headquarters to the nearest AI hub. All specifications
include fund-stock and time fixed effects plus control variables. Standard errors are double-clustered at fund and stock levels. t-statistics are in parentheses. ***, **, and * denote significance at the 1%,
5%, and 10% levels, respectively.

40



Table 4: Quasi-Natural Experiments: Technological Shocks to AI Effectiveness
Panel A: Transformer Architecture Release

Dependent Variable: EAj,t+h

Horizon (quarters) 1 2 3 4 5 6 7 8 9 10 11 12

AIFund2017Q3 × TF × Trading 0.049 0.212* 0.197* 0.072 0.151 0.030 -0.023 0.263 -0.062 -0.464** -0.121 -0.501**
(0.45) (1.81) (1.67) (0.61) (1.15) (0.23) (-0.15) (1.47) (-0.31) (-2.22) (-0.57) (-2.43)

AIFund2017Q3 × TF -0.000 -0.001*** -0.001** -0.001** -0.001*** -0.000 0.000 0.000 0.001* 0.000 0.001 0.001
(-0.06) (-2.96) (-2.41) (-2.23) (-3.05) (-1.06) (0.36) (0.36) (1.65) (0.73) (1.42) (1.63)

AIFund2017Q3 × Trading 0.044 -0.088 -0.096 0.012 -0.109 -0.041 -0.052 -0.198* -0.051 0.138 0.037 0.330**
(0.53) (-0.97) (-1.05) (0.13) (-1.13) (-0.42) (-0.45) (-1.65) (-0.36) (0.94) (0.22) (1.99)

TF × Trading -0.058 -0.171* -0.163* -0.007 -0.103 -0.143 -0.170 0.039 -0.087 0.004 -0.009 0.329**
(-0.75) (-1.93) (-1.85) (-0.09) (-1.12) (-1.48) (-1.51) (0.30) (-0.65) (0.03) (-0.06) (2.29)

Fund-stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 102,213 101,281 100,338 99,381 98,449 97,448 96,485 95,589 94,706 93,918 93,122 92,372
Adj. R-squared 0.748 0.742 0.738 0.754 0.740 0.735 0.706 0.664 0.633 0.646 0.644 0.647

Panel B: Staggered Introduction of Satellite Imaging Data

Dependent Variable: EAj,t+h

Horizon (quarters) 1 2 3 4 5 6 7 8 9 10 11 12

AIFund × SatCoverage × Trading 0.087** 0.094** 0.125*** 0.089** 0.076* 0.041 0.015 -0.028 -0.071** -0.089** -0.063* -0.082**
(2.12) (2.24) (2.85) (2.01) (1.68) (0.89) (0.31) (-0.56) (-1.98) (-2.13) (-1.45) (-1.87)

AIFund × SatCoverage -0.002 -0.003* -0.002 -0.001 -0.002 -0.001 0.000 0.001 0.002* 0.003** 0.002 0.003**
(-1.15) (-1.82) (-1.26) (-0.74) (-1.13) (-0.58) (0.15) (0.63) (1.89) (2.45) (1.62) (2.18)

AIFund × Trading 0.028* 0.034** 0.042** 0.008 0.022 0.011 -0.006 -0.019 -0.058** -0.071*** -0.046* -0.048*
(1.89) (2.15) (2.52) (0.46) (1.21) (0.53) (-0.29) (-0.87) (-2.42) (-2.76) (-1.73) (-1.71)

SatCoverage × Trading -0.054* -0.062** -0.081*** -0.057* -0.048 -0.029 -0.008 0.035 0.058* 0.071** 0.051 0.064*
(-1.72) (-1.96) (-2.45) (-1.68) (-1.35) (-0.79) (-0.21) (0.89) (1.86) (2.03) (1.42) (1.71)

Fund-stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 3,927,347 3,897,203 3,865,981 3,789,547 3,661,235 3,502,184 3,341,673 3,182,456 3,038,927 2,884,659 2,732,784 2,574,891
Adj. R-squared 0.642 0.627 0.631 0.646 0.624 0.620 0.622 0.627 0.621 0.622 0.625 0.630

Notes: This table presents difference-in-differences analysis exploiting two quasi-natural experiments. Panel A analyzes the Transformer architecture release (June 2017). The sample period covers

2016Q3-2018Q2. AIFund2017Q3 indicates funds classified as AI-adopting in 2017Q3. TF is an indicator for periods after the Transformer release (2017Q3 onward). Panel B analyzes the staggered
introduction of satellite imaging data coverage. SatCoverage indicates whether a firm’s headquarters location has satellite coverage available for investment analysis. The key coefficients of interest are
the triple interactions, which measure how technological improvements affecting AI effectiveness impact AI funds’ information processing relative to traditional funds. All specifications include
fund-stock and time fixed effects plus fund and stock control variables. Standard errors are double-clustered at fund and stock levels. t-statistics are in parentheses. ***, **, and * denote significance at
the 1%, 5%, and 10% levels, respectively.
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Table 5: AI Fund Ownership and Stock Price Informativeness
Dependent Variable: EAj,t+h

Horizon (quarters) 1 2 3 4 5 6 7 8 9 10 11 12

Panel A: OLS Estimates

AIown × logMA 0.021*** 0.017** 0.013* 0.021*** 0.011 -0.011 -0.010 -0.001 -0.011 0.003 -0.020* -0.007
(2.87) (2.51) (1.87) (2.73) (1.37) (-1.37) (-1.04) (-0.11) (-1.13) (0.28) (-1.77) (-0.56)

Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 180,935 178,607 175,985 170,334 164,369 158,467 152,705 147,013 141,443 136,063 130,754 125,532
Adj. R-squared 0.184 0.126 0.107 0.106 0.049 0.035 0.034 0.039 0.027 0.027 0.031 0.035

Panel B: IV Estimates

AIown × logMA 0.056* 0.072** 0.016 0.023 -0.047 -0.086** -0.069 -0.029 -0.084* -0.134*** -0.143*** -0.173***
(1.87) (2.31) (0.48) (0.64) (-1.23) (-2.03) (-1.48) (-0.64) (-1.74) (-2.66) (-2.66) (-3.12)

Stock FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Observations 180,935 178,607 175,985 170,334 164,369 158,467 152,705 147,013 141,443 136,063 130,754 125,532
Adj. R-squared 0.185 0.127 0.107 0.106 0.049 0.035 0.033 0.039 0.027 0.027 0.031 0.035

Notes: This table examines how AI fund ownership affects stock price informativeness using the methodology of Bai, Philippon, and Savov (2016). The dependent variable is future earnings h quarters
ahead. AIown is the percentage of shares held by AI funds. logMA is the log market-to-assets ratio. Panel A shows OLS estimates and Panel B shows IV estimates using aggregated AI talent exposure
and distance to AI hubs as instruments. All specifications include stock and time fixed effects plus stock control variables (current earnings, log size, leverage, ROE, growth, book-to-market, analyst
coverage). Standard errors are double-clustered at stock-time levels. t-statistics are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels, respectively.
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Table 6: Future Earnings Response Coefficient Analysis

Dependent Variable: Stock Return

OLS IV

AIown× EA[t+ 1] 0.248 1.459
(0.44) (1.22)

AIown× EA[t+ 2] 0.299 1.966*
(0.63) (1.72)

AIown× EA[t+ 3] 0.125 2.878***
(0.23) (2.65)

AIown× EA[t+ 4] 1.284** 2.160**
(2.43) (2.00)

AIown× EA[t+ 5] 0.927** 0.720
(2.05) (0.69)

AIown× EA[t+ 6] -0.474 -1.847*
(-1.02) (-1.86)

AIown× EA[t+ 7] -1.117*** 1.630
(-2.69) (1.63)

AIown× EA[t+ 8] 0.081 1.348
(0.20) (1.40)

AIown× EA[t+ 9] -0.967** -1.596*
(-2.32) (-1.76)

AIown× EA[t+ 10] 0.290 -2.122**
(0.70) (-2.38)

AIown× EA[t+ 11] 0.165 1.159
(0.38) (1.33)

AIown× EA[t+ 12] -0.067 -0.959
(-0.17) (-1.16)

Stock FE Yes Yes
Time FE Yes Yes
Other FERC Components Yes Yes
Stock Controls Yes Yes
Observations 125,481 125,481
Adj. R-squared 0.328 0.329

Notes: This table presents future earnings response coefficient (FERC) analysis examining how current
stock returns reflect information about future earnings. The dependent variable is quarterly stock return.
AIown is the percentage of shares held by AI funds. EA[t+ h] represents earnings h quarters ahead. The
specification includes interactions between AI ownership and all 12 future earnings horizons simultaneously,
along with other FERC model components (main effects, lagged earnings interactions). Column 1 shows
OLS estimates and Column 2 shows IV estimates using aggregated instruments. All specifications include
stock and time fixed effects plus stock controls. Standard errors are double-clustered at stock-time levels.
t-statistics are in parentheses. ***, **, and * denote significance at the 1%, 5%, and 10% levels,
respectively.
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Table 7: AI Fund Ownership and Investment-Q Sensitivity

Dependent Variable: Investmentj,t+1

R&D CapEx R&D+NetInv R&D+CapEx CapEx+NetInv

Panel A: OLS Estimates
AIown×Q -0.004*** -0.012*** -0.008*** -0.017*** -0.017***

(-5.06) (-9.81) (-5.21) (-10.15) (-7.54)
AIown 0.003*** 0.011*** 0.010*** 0.015*** 0.018***

(7.32) (8.29) (6.72) (10.41) (7.87)
Q 0.002*** 0.010*** 0.011*** 0.012*** 0.019***

(18.95) (39.31) (41.58) (42.43) (44.29)
Observations 180,935 177,848 171,297 177,848 168,718
Adj. R-squared 0.903 0.659 0.541 0.698 0.524

Panel B: IV Estimates
AIown×Q -0.066*** -0.051*** -0.078*** -0.140*** -0.036***

(-22.60) (-8.10) (-10.99) (-18.31) (-3.38)
AIown 0.023*** 0.019*** 0.057*** 0.053*** 0.043***

(12.09) (3.03) (8.02) (7.45) (3.78)
Q 0.004*** 0.011*** 0.013*** 0.016*** 0.019***

(25.92) (31.99) (35.35) (39.40) (33.27)
Observations 180,935 177,848 171,297 177,848 168,718
Adj. R-squared 0.904 0.659 0.542 0.699 0.524

Fixed Effects and Controls
Stock FE Yes Yes Yes Yes Yes
Time FE Yes Yes Yes Yes Yes
Stock Controls Yes Yes Yes Yes Yes

Notes: This table examines how AI fund ownership affects the sensitivity of corporate investment to
Tobin’s Q. The dependent variables are various investment measures in period t+1: R&D expenditure,
capital expenditure (CapEx), R&D plus net investment (NetInv), R&D plus CapEx, and CapEx plus
NetInv, all scaled by lagged total assets. AIown is the percentage of shares held by AI funds. Q is Tobin’s
Q (market value of equity plus book value of assets minus book value of equity, divided by book value of
assets). Panel A shows OLS estimates and Panel B shows IV estimates using aggregated AI talent
exposure and distance to AI hubs as instruments. All specifications include stock and time fixed effects
plus stock controls (current earnings, log size, leverage, ROE, growth, book-to-market, analyst coverage).
Standard errors are double-clustered at stock-time levels. t-statistics are in parentheses. ***, **, and *
denote significance at the 1%, 5%, and 10% levels, respectively.
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