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Rare events (RE) and long-run risks (LRR) are complementary approaches for characterizing 
macroeconomic variables and understanding asset pricing. We estimate a model with RE 
and LRR using long-term consumption data for 42 economies, identify these two types 
of risks simultaneously from the data, and reveal their distinctions. RE typically associates 
with major historical episodes, such as world wars and depressions and analogous country-
specific events. LRR reflects gradual processes that influence long-run growth rates and 
volatility. A match between the model and observed average rates of return on equity 
and short-term bonds requires a coefficient of relative risk aversion, γ , around 6. Most of 
the explanation for the equity premium derives from RE, although LRR makes a moderate 
contribution. However, LRR helps in fitting the Sharpe ratio. Generating good matches to 
the equity premium and Sharpe ratio simultaneously is still challenging.

© 2020 Elsevier Inc. All rights reserved.

Rare macroeconomic events, denoted RE, provide one approach for modeling the long-term evolution of macroeconomic 
variables such as GDP and consumption. Another approach, called long-run risks or LRR, emphasizes variations in the long-
run growth rate and the variance of shocks to this growth rate (stochastic volatility). An extensive literature has studied RE 
and LRR as distinct phenomena, but a joint approach does better at describing the macro data. Moreover, although we prefer 
a model that incorporates both features, we can assess the relative contributions of RE and LRR for explaining asset-pricing 
properties, such as the average equity premium and the volatility of equity returns.

As in previous research, this study treats RE and LRR as latent variables. Our formalization of the distinct features of RE 
and LRR allows us to isolate these two forces using data on real per capita consumer expenditure for 42 economies going 
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back as far as 1851 and ending in 2012 (4814 country-year observations). The estimated model indicates that RE comprises 
sporadic, drastic, and jumping outbursts, whereas LRR exhibits persistent, moderate, and smooth fluctuations.

With respect to RE, our results include characterizations for when the world and individual countries are in disaster 
states and by how much. We also isolate patterns of economic recovery, related to the extent to which disaster shocks have 
permanent or temporary impacts. At the world level, the periods labeled as RE (based on posterior probability distributions) 
correspond to familiar historical events, such as the world wars, the Great Depression, and possibly the Great Influenza 
Epidemic of 1918-20 (but not the recent Great Recession). For individual or small groups of countries, examples of events 
associated with rare disasters are the Asian Financial Crisis of 1997-98, the Russian Revolution and Civil War after World 
War I, the 1973 Chilean coup and its aftermath, and the German hyperinflation in 1921-24.

Similarly, for LRR, our results include ex-post characterizations of movements in the long-run growth rate and volatility. 
In contrast to RE, LRR exhibits much smoother, low-frequency evolution. For example, for the United States, the long-run 
growth component is estimated to be well above normal for 1962-67, 1971, 1982-85, and 1997-98—recent periods typically 
viewed as favorable for economic growth. At earlier times, the long-run growth rate is unusually high in 1933-36 (recovery 
from the Great Depression), 1898, and 1875-79 (resumption of the gold standard). On the down side, the estimated U.S. 
long-run growth rate is unusually low in 2007-09 (Great Recession), 1990, 1979, 1910-13, 1907, 1882-93, 1859-65, and 
1852-55.

As examples for other countries, the estimated long-run growth rate is high in Germany for 1945-71; Japan for 1945-72; 
Chile for 1986-96, 2003-06, and 2009-11; Russia for 1999-2011; and the United Kingdom for 1983-88 and 1995-2002. Weak 
periods for the long-run growth rate include Russia in 1989-97 and the United Kingdom in 2007-11.

The estimated process for stochastic volatility is even smoother than that for the long-run growth rate. The results for 
recent years exhibit the frequently mentioned pattern of moderation—the estimated volatility was particularly low in the 
late 1990s for many countries, including the United States, Germany, and Japan. In contrast, Russia experienced a sharp rise 
in volatility from 1973 to 2007.

To assess asset pricing, we embed the estimated time-series process for consumption into an endowment economy with 
a representative agent that has Epstein-Zin-Weil (EZW) preferences (Epstein and Zin (1989) and Weil (1990)). This analysis 
generates predictions for the average equity premium, the volatility of equity returns, and so on. Then we compare these 
predictions with averages found in the long-term data for a group of countries.

The rest of the paper is organized as follows. Section 1 relates our study to the previous literature on rare macroeco-
nomic events and long-run risks. Section 2 lays out our formal model, which includes rare events (partly temporary, partly 
permanent) and long-run risks (including stochastic volatility). Section 3 discusses the long-term panel data on consumer 
expenditure, describes our method of estimation, and presents empirical results related to RE, LLR, the distinctions between 
them, and the time evolution of consumer spending in each country. The analysis includes a detailed description for six 
illustrative countries of the evolution of posterior means of the key variables related to rare events and long-run risks. 
Section 4 presents the framework for asset pricing. We draw out the implications of the estimated processes for consumer 
spending for various statistics, including the average equity premium, the volatility of equity returns, and the Sharpe Ratio. 
Section 5 discusses the potential addition of time variation in the disaster probability or the size distribution of disasters. 
Section 6 has conclusions.

1. Relation to the literature

Rietz (1988) proposed rare macroeconomic disasters, particularly potential events akin to the U.S. Great Depression, as 
a possible way to explain the “equity-premium puzzle” of Mehra and Prescott (1985). The Rietz idea was reinvigorated by 
Barro (2006) and Barro and Ursúa (2008), who modeled macroeconomic disasters as short-run cumulative declines in real 
per capita GDP or consumption of magnitude greater than a threshold size, such as 10%. Using the observed frequency and 
size distribution of these disasters for 36 countries, Barro and Ursúa (2008) found that a coefficient of relative risk aversion, 
γ , around 3.5 was needed to match the observed average equity premium of about 7% (on levered equity). Barro and Jin 
(2011) modified the analysis to gauge the size distribution of disasters with a fitted power law, rather than the observed 
histogram. This analysis estimated the required γ to be around 3, with a 95% confidence interval of 2 to 4.

Nakamura et al. (2013), henceforth NSBU, modified the baseline rare-disasters model in several respects: (1) the extended 
model incorporated the recoveries (sustained periods of unusually high economic growth) that typically follow disasters;

(2) disasters were modeled as unfolding in a stochastic manner over multiple years, rather than unrealistically occurring 
as a jump over a single “period;” and (3) the timing of disasters was allowed to be correlated across countries, as is apparent 
for world wars and global depressions.

The empirical estimates indicated that, on average, a disaster reached its trough after six years, with a peak-to-trough 
drop in consumption averaging about 30% and that, on average, half of the decline was reversed in a gradual period of 
recovery. With an intertemporal elasticity of substitution (IES) of two, NSBU found that a coefficient of relative risk aversion, 
γ , of about 6.4 was required to match the observed long-term average equity premium. Although the NSBU model improved 
on the baseline rare-disasters models in various ways, the increase in the required γ was a negative in the sense that a 
value of 6.4 may be unrealistically high. The main reason for the change was the allowance for recoveries from disasters; 
that is, disasters had a smaller impact on asset pricing than previously thought because they were not fully permanent. In 
the present formulation, we improve in several respects on the NSBU specification of rare events.
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The notion of rare macroeconomic events has been employed by researchers to explain a variety of phenomena in asset 
and foreign-exchange markets, as surveyed in Barro and Ursúa (2012). Examples of this literature are Gabaix (2012), Gourio
(2008, 2012), Farhi and Gabaix (2016), Farhi et al. (2015), Wachter (2013), Seo and Wachter (2016), and Colacito and Croce 
(2013).

Bansal and Yaron (2004), henceforth BY, introduced the idea of long-run risks. The central notion is that small but 
persistent shocks to expected growth rates and to the volatility of shocks to growth rates are important for explaining 
various asset-market phenomena, including the high average equity premium and the high volatility of stock returns. The 
main results in BY and in the updated study by Bansal et al. (2010) required a coefficient of relative risk aversion, γ , 
around 10, much higher than the values needed in the rare-disasters literature. (BY assumed an intertemporal elasticity of 
substitution of 1.5 and also assumed substantial leverage in the relation between dividends and consumption.) In our study, 
we incorporate the long-run risks framework of BY, along with an updated specification for rare macroeconomic events.

The idea of long-run risks has been applied to many aspects of asset and foreign-exchange markets. This literature 
includes Bansal and Shaliastovich (2013); Bansal et al. (2005); Hansen et al. (2008); Malloy et al. (2009); Croce et al. (2015); 
Chen (2010); Colacito and Croce (2011); and Nakamura et al. (2017). Beeler and Campbell (2012) provide a critical empirical 
evaluation of the long-run-risks model.

There is a large literature investigating separately the implications of rare events, RE, and long-run risks, LRR. However, 
our view is that—despite the order-of-magnitude increase in the required numerical analysis—it is important to assess the 
two core ideas, RE and LRR, in a simultaneous manner.2 This study reports the findings from this joint analysis.

2. Model of rare events and long-run risks

The model allows for rare events, RE, and long-run risks, LRR. The RE part follows Nakamura et al. (2013) (or NSBU) 
in allowing for macroeconomic disasters of stochastic size and duration, along with recoveries that are gradual and of 
stochastic proportion. We modify the NSBU framework in various dimensions, including the specification of probabilities 
for world and individual country transitions between normal and disaster states. Most importantly, we expand on NSBU 
by incorporating long-run risks, along the lines of Bansal and Yaron (2004). The LRR specification allows for fluctuations in 
long-run growth rates and for stochastic volatility.

2.1. Components of consumption

As in NSBU, the log of consumption per capita for country i at time t , cit , is the sum of three unobserved variables:

cit = xit + zit + σεiεit, (1)

where xit is the “potential level” (or permanent part) of the log of per capita consumption and zit is the “event gap,” which 
describes the deviation of cit from its potential level due to current and past rare events. The potential level of consumption 
and the event gap depend on the disaster process, as detailed below. The term σεiεit is the error term, where εit is an i.i.d. 
standard normal variable. The standard deviation, σεi , of the error term varies by country. We also allow σεi to take on 
two values for each country, one up to 1945 and another thereafter.3 This treatment allows for post-WWII moderation in 
observed consumption volatility particularly because of improved measurement in national accounts—see Romer (1986) and 
Balke and Gordon (1989). In this study, we view σεiεit as measurement error, rather than a consumption shock. Thus, it is 
attributed to neither rare disasters nor long-run risks.

2.2. Disaster probabilities

We follow NSBU, but with significant modifications, in assuming that rare macroeconomic events involve disaster and 
normal states. Each state tends to persist over time, but there are possibilities for transitioning from one state to the other. 
The various probabilities have world and country-specific components.

For the world component, we have in mind the influence from major international catastrophes such as the two world 
wars and the Great Depression of the early 1930s. Additional possible examples are the Great Influenza Epidemic of 1918-
20, the threat from climate change, and the current Coronavirus Pandemic.4 However, the recent global financial crisis of 
2008-09 turns out not to be sufficiently important to show up as a world disaster.

We characterize the world process with two probabilities—one, denoted p0, is the probability of moving from normalcy 
to a global disaster state (such as the start of a world war or global depression), and two, denoted p1, is the probability of 

2 Nakamura et al. or NSS (2017, section 3) filter the consumption data for crudely estimated disaster effects based on the results in Nakamura et al. 
(2013) or NSBU. Thus, NSS do not carry out a joint analysis of rare events and long-run risks. This joint analysis was also not in NSBU, which neglected 
long-run risks. In their analysis of asset pricing, NSS consider only the role of long-run risks (applied to their disaster-filtered data), whereas NSBU allowed 
only for effects from rare events. Thus, neither NSS nor NSBU carried out a joint analysis of rare events and long-run risks.

3 When the data for country i begin after 1936, σεi takes on only one value.
4 See Barro (2015) for an application of the rare-events framework to environmental issues. See Barro et al. (2020) for an analysis of the ongoing 

coronavirus pandemic as a realization of a rare disaster.
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staying in a world disaster state. Thus, (1 − p1) is the probability of moving from a world disaster state to normalcy (such 
as the end of a world war or global depression). Formally, if I wt is a dummy variable for the presence of a world event, we 
assume:

Pr(I wt = 1 | I w,t−1) =
{

p0 if I w,t−1 = 0,

p1 if I w,t−1 = 1.
(2)

We expect p1 > p0; that is, a world event at t is (much) more likely if the world was experiencing an event at t − 1.
For each country, we assume that the chance of experiencing a rare macroeconomic event depends partly on the world 

situation and partly on individual conditions. We specify four probabilities—reflecting the presence or absence of a contem-
poraneous world event and whether the country experienced a rare event in the previous period. Formally, if Iit is a dummy 
variable for the presence of an event in country i, we have

Pr(Iit = 1 | Ii,t−1, I wt) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q00 if Ii,t−1 = 0 and I wt = 0,

q01 if Ii,t−1 = 0 and I wt = 1,

q10 if Ii,t−1 = 1 and I wt = 0,

q11 if Ii,t−1 = 1 and I wt = 1.

(3)

We expect q01 > q00 and q11 > q10; that is, the presence of a world event at time t makes it (much) more likely that country 
i experiences an event at t . We also expect q10 > q00 and q11 > q01; that is, an individual country event at t is (much) more 
likely if the country experienced an event at t − 1. In the present specification, the various disaster probabilities—p0, p1, 
q00, q01, q10, and q11—are constant over time. The q-parameters also do not vary across countries.

2.3. Potential consumption

The growth rate of potential consumption includes effects from rare events, RE, and long-run risks, LRR. The specification 
for country i at time t is:

�xit = μi + Iitηit + χi,t−1 + σi,t−1uit, (4)

where �xit ≡ xit − xi,t−1, μi is the constant long-run average growth rate of potential consumption, Iitηit picks up the 
permanent effect of a disaster, χi,t−1 is the evolving part of the long-run growth rate, σi,t−1 represents stochastic volatility, 
and uit is an i.i.d. standard normal variable.

2.4. Rare events

The RE part of equation (4) appears in the term Iitηit , which operates for country i at time t when the country is in a 
disaster state (Iit = 1). The random shock ηit determines the long-run effect of a current disaster on the level of country i’s 
potential consumption. If ηit < 0, a disaster today lowers the long-run level of potential consumption; that is, the projected 
recovery from a disaster is less than 100%. We assume that ηit is normally distributed with a mean and variance that are 
constant over time and across countries. In practice, we find that the mean of ηit is negative, but a particular realization 
may be positive. Thus, although the typical recovery is less than complete, a disaster sometimes raises a country’s long-run 
level of consumption (so that the projected recovery exceeds 100%).

2.5. Long-run risks

The LRR part of equation (4) appears in the terms χi,t−1 and σi,t−1uit . These terms capture, respectively, variations in 
the long-run growth rate and stochastic volatility. Our analysis of these variables follows Bansal and Yaron (2004, p. 1487, 
equation (8)).5

We think of the sum of μi and χi,t−1 as a country’s long-run growth rate for period t . The χi,t−1 term is the evolving 
part of the long-run growth rate and is governed by:

χit = ρχχi,t−1 + kσi,t−1eit, (5)

where ρχ is a first-order autoregressive coefficient, with 0 ≤ ρχ < 1. The shock includes the standard normal variable eit , 
multiplied by the stochastic volatility, σi,t−1, and adjusted by the positive constant, k. The parameter k is the ratio of the 
standard deviation of the shock to the long-run growth rate, χit , to the standard deviation of the shock to the growth rate 
of potential consumption, �xi,t+1 from equation (4). The constancy of k means that the volatility of these two shocks moves 
in tandem over time within each country.

5 The main difference in specification is that Bansal and Yaron (2004) exclude rare-event components. Another difference, important for asset pricing, is 
that they assume a levered relationship between dividends and consumption.
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2.6. Stochastic volatility

Stochastic volatility, σit , enters in equations (4) and (5). We follow Bansal and Yaron (2004, p. 1487) in modeling the 
evolution of volatility as an AR(1) process for the variance:

σ 2
it = σ 2

i + ρσ

(
σ 2

i,t−1 − σ 2
i

) + σωiωit, (6)

where σ 2
i is the average country-specific variance, and ρσ is a first-order autoregressive coefficient, with 0 ≤ ρσ < 1. 

The shock includes the standard normal variable ωit multiplied by the country-specific volatility of volatility, σωi . In the 
estimation, we use a method similar to Bansal and Yaron (2004, p. 1495, n. 13) in constraining σ 2

it to be non-negative (see 
Appendix A.3).

2.7. Dynamics of event gaps

Returning to equation (1), we now consider the event gap, zit , which describes the deviation of cit from its potential 
level due to current and past rare events. We assume, following NSBU, that zit follows a modified autoregressive process:

zit = ρz zi,t−1 + Iitφit − Iitηit + σνiνit, (7)

where ρz is a first-order autoregressive coefficient, with 0 ≤ ρz < 1. The term Iitφit picks up the immediate effect of a 
disaster on consumption, whereas the term Iitηit captures the permanent part of this effect. Thus, the term Iit · (φit − ηit)

is the temporary part of the disaster shock. The error term includes the standard normal variable νit multiplied by the 
country-specific constant volatility σνi .

The direct effect of a disaster during period t appears in equation (7) as the term Iitφit . We assume that φit is negative, 
and we model it as a truncated normal distribution (with mean and variance for the non-truncated distribution that are 
constant over time and across countries). Thus, in the short run, a disaster lowers cit in equation (1). However, as the event 
gap vanishes in equation (7), part of this disaster effect on cit disappears. Specifically, for given Iitηit , the shock Iitφit does 
not affect cit in the long run.

The long-run impact of a disaster involves the term −Iitηit in equation (7), which operates in conjunction with the term 
+Iitηit in equation (4). The combination of these two terms means that the short-run effect of ηit on cit in equation (1)
is nil. However, as the event gap, zit , vanishes, the long-run impact on consumption approaches ηit . Thus, if ηit < 0 (the 
typical case), the effect on the long-run consumption level is negative.

If ηit = φit , the long- and short-run effects of a disaster coincide; that is, disasters have only permanent effects on cit . 
If ηit = 0, the long-run effect of a disaster is nil; that is, disasters have only temporary effects on cit . We find empirically, 
as do NSBU, that recoveries tend to occur but are typically only partial. This result corresponds to a mean for ηit that is 
negative but smaller in magnitude than that for φit .

2.8. Consumption growth

The estimation is based on the observable growth rate of per capita consumption, �cit (based on the available data on 
personal consumer expenditure). To see how this variable relates to the underlying rare events and long-run risks, start by 
taking a first-difference of equation (1). Then substitute for �xit from equation (4) and for zit and zi,t−1 from equation (7)
to get:

�cit = Iitφit − (1 − ρz)Ii,t−1φi,t−1 + (1 − ρz)Ii,t−1ηi,t−1 − ρz(1 − ρz)zi,t−2︸ ︷︷ ︸
R E

+ μi + χi,t−1︸ ︷︷ ︸
long-run growth rate

+error term. (8)

Equation (8) shows that consumption growth can be decomposed into a rare-events (RE) component, the long-run growth 
rate (which includes the persistent component of the consumption growth, the main part of the LRR), and the error term. 
This error depends on uit (equation (4)) and the contemporaneous and lagged values of εit (equation (1)) and νit (equation 
(7)).

To bring out the main properties for the RE term, assume first that ρz = 0 in equation (8), so that event gaps have 
zero persistence over time in equation (7). In an RE state (Iit = 1), the shock φit < 0 gives the initial downward effect 
on consumption growth. For given ηit , this effect exactly reverses the next period—that is, the effect on the level of c is 
temporary, so that an equal-size rise in consumption growth follows the initial fall. In contrast, if ηit = φit , the effect on 
the level of c is permanent, and there is no impact on next period’s consumption growth rate. The lagged term zi,t−2 in 
equation (8) brings in more lags of rare-events shocks through the dynamics of event gaps in equation (7). This lag structure 
applies when ρz �= 0.
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To assess LRR, consider the term for the long-run growth rate in equation (8). The first part, μi , is assumed to be 
constant for country i. The LRR effect is mainly given by χi,t−1, which is the variable part of the long-run growth rate. This 
term evolves in accordance with equations (5) and (6), which allow for stochastic volatility.

2.9. Alternative decomposition of consumption growth

The previous decomposition focuses on the roles of RE and the long-run growth rate, the main part of LRR. The shock 
that includes stochastic volatility, σi,t−1uit , does not show up there explicitly. However, we can decompose the consumption 
growth rate in a different way to separate the term σi,t−1ηit from the other error terms.

For country i, define the consumption growth gap �̃cit as the difference between the actual and long-term average growth 
rate μi :

�̃cit � �cit − μi = cit − ci,t−1 − μi .

This growth rate can be decomposed into four components as follows:

�̃cit � R Eit + χi,t−1 + σi,t−1uit + Nit,

where

R Eit = Iitηit + �zit = Iitηit + zit − zi,t−1

and

Nit = �(σεiεit) = σεiεit − σεiεi,t−1.

The R Eit term is basically the same as the RE component defined in Section 2.8, except that R Eit contains the shocks νit

and νi,t−1. The slow-varying component χi,t−1 characterizes the long-run growth rate, and Nit is the noise or measurement-
error term. The long-term mean values of χi,t−1, σi,t−1uit , and Nit are 0, while that of R Eit is not. Let R E DM

it denote the 
demeaned R Eit , and

�cDM
it � R E DM

it + χi,t−1 + σi,t−1uit + Nit

denote the demeaned consumption growth gap. The terms in this last decomposition will be identified after the model is 
estimated (see Section 3.2).

3. Data, estimation method, and empirical results

We use an expanded version of the data on annual consumption (real per capita personal consumer expenditure) pro-
vided for 42 economies in Barro and Ursúa (2010). We extended on these data by including observations as far back as 
1851 (rather than 1870) and going through 2012. There are 4814 country-year observations. Appendix A.1 provides details.

We follow NSBU in estimating the model with the Bayesian Markov-Chain Monte-Carlo (MCMC) method. RE and LRR are 
shocks of different nature, and the statistical distinctions between them enable us to identify them. Bayesian MCMC is an 
appropriate choice for estimating the model because, first, it is a standard and widely adopted estimation method;

second, the necessary identifying information can be conveniently incorporated into prior beliefs; and, third, it is rela-
tively easy to implement for as complicated a model as the one proposed here.6 Our implementation of Bayesian MCMC 
features nearly flat prior distributions for the various underlying parameters. See Appendix A.3 for details. Here, we focus 
on the posterior means of each parameter.

3.1. Estimated model

Table 1 contains the posterior means and standard deviations for the main parameters of the model. These parameters 
apply across countries and over time.

1. Transition probabilities. The first group of parameters in Table 1 applies to transition probabilities between normal 
and disaster states. With respect to a world event, we find that p0, the estimated probability of moving from a normal to a 
disaster state, is 2.9% per year. Once entering a disaster, there is a lot of persistence: the estimated conditional probability, 
p1, of the world remaining in a disaster state the following year is 65.8%.

The probability of a disaster for an individual country depends heavily on the global situation and also on whether the 
country was in a disaster state in the previous year. If there is no contemporaneous world disaster, the estimated probability, 

6 Bansal et al. (2016) propose a method to estimate the LRR model with time aggregation using the Generalized Method of Moments (GMM). However, 
that method is not helpful in our setting because we are using annual data, and the decision interval of the agents in Bansal et al. (2016) is only 33 days. 
See also notes 12 and 13.



Table 1
Estimated parameters—model with rare events and long-run risks.

Parameter Definition Posterior mean Posterior s.d. 5% & 95% Percentiles

World disaster probability, conditional on:
p0 No prior-year world disaster 0.029 0.011 0.012, 0.047
p1 Prior-year world disaster 0.658 0.139 0.397, 0.854

Country disaster probability, conditional on:
q00 No prior-year disaster, no current world disaster 0.0066 0.0022 0.0035, 0.0107
q10 Prior-year disaster, no current world disaster 0.719 0.050 0.638, 0.780
q01 No prior-year disaster, current world disaster 0.360 0.052 0.304, 0.470
q11 Prior-year disaster, current world disaster 0.857 0.037 0.778, 0.897

Parameters that are constant across countries:
ρz AR(1) coefficient for event gap (Eq. (7)) 0.304 0.030 0.260, 0.355
φ Immediate disaster shock (Eq. (7)) −0.0790 0.0081
φ� Mean value of the normal distribution for φit (before truncation) −0.0185 0.015 −0.0516, −0.0012
η Permanent disaster shock (Eq. (7)) −0.0282 0.0081 −0.0417, −0.0153
σφ s.d. of φ shock 0.0574 0.0063
σ �

φ s.d. of the normal distribution for φit (before truncation) 0.0894 0.012 0.0696, 0.106
ση s.d. of η shock 0.148 0.011 0.131, 0.169
ρχ AR(1) coefficient for variable part of long-run growth rate (Eq. (5)) 0.730 0.034 0.669, 0.781
ρσ AR(1) coefficient for stochastic volatility (Eq. (6)) 0.963 0.014 0.925, 0.978
k Multiple on error term for variable part of long-run growth rate (Eq. (5)) 0.705 0.093 0.568, 0.880

Country-specific parameters:
μi Long-run average growth rate (Eq. (4)) 0.0201 0.0039 0.0123, 0.0289
σεi s.d. for shock to consumption (Eq. (1)), pre-1946 0.0231 0.0069 0.00184, 0.0669
σεi s.d. for shock to consumption (Eq. (1)), post-1945 0.0061 0.0035 0.0012, 0.0207
σ 2

i Average variance for stochastic volatility (Eq. (6)) 0.000572 0.00020 0.0000841, 0.00147
σωi s.d. for shock to σ 2

it (Eq. (6)) 0.0000840 0.000049 0.0000125, 0.000267
σνi s.d. for shock to event gap (Eq. (7)) 0.00515 0.0028 0.00125, 0.0126

Note: The model corresponds to equations (1)–(8) in the text. The model is estimated with data on real per capita consumer expenditure for 42 economies 
observed as far back as 1851 and ending in 2012 (4814 country-year observations). The data and estimation procedure are discussed in Appendix A. The 
table shows the posterior mean and standard deviation and the 5% and 95% percentiles for each parameter.

For those country-specific parameters, the posterior means and the 5% and 95% percentiles are calculated after we pool the simulation values for all 
the countries together. The posterior standard deviations are calculated as the mean values over i.

q00, of a country moving from a normal to a disaster state is only 0.66% per year. The estimated conditional probability, 
q10, of a country remaining in a disaster state from one year to the next is 71.9% (if there is no contemporaneous world 
disaster).

In the presence of a world disaster, the estimated probability, q01, of a country moving from normalcy to disaster is 36.0% 
per year. Finally, if there is a world disaster, the estimated conditional probability, q11, of a country staying in a disaster 
state from one year to the next is 85.7%.

The matrix of transition probabilities determines, in the long run, the fraction of time that the world and individual 
countries spend in normal and disaster states. Specifically, the world is estimated to be in a disaster state 7.8% of the time, 
and each country is estimated to be in a disaster state 9.8% of the time. The average duration of a disaster state is 4.2 years 
for a country (2.9 years for the world).

As a comparison, Barro and Ursúa (2008, Fig. 1, p. 285) found a mean duration for consumption disasters of 3.6 years. 
That study used a peak-to-trough methodology for measuring disaster sizes and defined a disaster as a cumulative contrac-
tion by least 10%. If we restrict our present analysis to condition on a disaster cumulating to a decline by at least 10%, we 
get that a country is in a disaster state 8.6% of the time and that the duration of a disaster averages 5.0 years.

We can also compute for each year the posterior mean of I wt , the dummy variable for a world disaster event. This value, 
plotted in Fig. 1, exceeds 50% for 14 of the 162 sample years (which covers 1851 to 2012): 1914-19, 1930, and 1939-45. In 
many of these years, the posterior mean exceeds 90% (1914-15, 1930, 1939-40, 1943-45). These results accord with Barro 
and Ursúa (2008), who noted that the main world macroeconomic disasters in the long-term international data (in that 
study since 1870) applied to World War I, the Great Depression, and World War II, with the possible addition of the Great 
Influenza Epidemic of 1918-20.

Aside from 1914-19, 1930, and 1939-45, the only other years where the posterior mean of I wt is at least 10% in Fig. 1
are 1867, 1920, 1931, and 1946. In particular, the recent global financial crisis of 2008-10 does not register in the figure 
(although it does show up for Greece and Iceland). Specifically, the posterior world event probability peaks at only 0.001 in 
2008.

We can similarly compute for each year the posterior mean of Iit , the dummy variable for a disaster event for each 
country. Not surprisingly, many countries are gauged to be in a disaster state when the world is in a disaster. Outside of 
the main world disaster periods (1867, 1914-20, 1930-31, 1939-46), the cases in which individual countries have posterior 
means for Iit of 25% or more are shown in Table 2. These events include the 1973 Chilean coup, the collapse of the 
Argentinean fixed-dollar regime in 2001-02, the German hyperinflation in 1921-24, the Great Recession in Greece for 2009-
12, Indian independence in 1947, the Asian Financial Crisis of 1997-98 for Malaysia and South Korea, the Mexican financial 
R.J. Barro, T. Jin / Review of Economic Dynamics 39 (2021) 1–25 7
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Fig. 1. World rare-event probability. 
Note: This figure plots the posterior mean of the world rare-event dummy variable, I wt , and, therefore, corresponds to the estimated probability that a 
world rare event was in effect for each year from 1851 to 2012. See equation (2) in the text.

Table 2
Country-years with Posterior Disaster Probability of 25% or More 
(Outside of global event years: 1867, 1914-20, 1930-31, 1939-46).

Country Years

Argentina 1891-1902, 2001-02
Australia 1932, 1947
Belgium 1947
Brazil 1975
Canada 1921-22, 1932
Chile 1921-22, 1932-33, 1955-57, 1972-85
Colombia 1932-33, 1947-50
Denmark 1921-24, 1947-48
Egypt 1921-23, 1947-59, 1973-79
Finland 1868, 1932
Germany 1921-27, 1947-49
Greece 1947, 2009-12
Iceland 2008
India 1947-50
Malaysia 1998
Mexico 1932, 1995
New Zealand 1894-97, 1921-22, 1947-52
Norway 1921-22
Peru 1932, 1985-89
Portugal 1975
Russia* 1921-24, 1947-48
Singapore 1950-53, 1958-59
South Korea 1947-52, 1997-98
Spain 1932-38, 1947-52, 1960
Sweden 1868-69, 1921, 1947-50
Switzerland 1853-57, 1947
Taiwan 1901-12, 1947-51
Turkey 1876-81, 1887-88, 1921, 1947-50
United States 1921, 1932-33
Venezuela 1932-33, 1947-58

Note: Table 2 reports cases in which the posterior mean of the 
rare-event dummy variable, Iit for country i at time t , is at least 
0.25. See equation (3) in the text.

* For Russia in the 1990s, the posterior disaster probability 
peaks at 0.14 in 1991. Using data on GDP, rather than consump-
tion, Russia clearly shows up as a macroeconomic disaster for 
much of the 1990s.
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Table 3
Decomposition of consumption growth.

Mean Share of 
variance of �cit

1st-order auto-
correlation

�cit 0.0201 – 0.122
RE −0.0025 0.53 0.193
Long-run growth rate (includes LRR) 0.0223 0.10 0.876
Error term 0.0003 0.36 −0.308

Note: The entries refer to the decomposition of the annual growth rate of per capita con-
sumption, �cit , into three parts in equation (8). RE is the rare-events term. The term for the 
long-run growth rate incorporates long-run risks (LRR). The share refers to the variance in 
�cit associated with each term expressed as a ratio to the overall variance in �cit associated 
with the three terms.

crisis of 1995, the violence and economic collapse in Peru in 1985-89, the Portuguese Revolution of 1975, the Russian 
Revolution and civil war for 1921-24, the Spanish Civil War in 1936-38, the Korean War for South Korea for 1950-52, the 
Russo-Turkish War for Turkey in 1876-81, and the extended Great Depression in the United States for 1932-33.

2. Size distribution of disasters. The next group of parameters in Table 1 relates to rare events, corresponding to the RE 
term in equation (8) and the dynamics of event gaps in equation (7). The parameter ρz determines how rapidly a country 
recovers from a disaster. The estimated value, 0.30 per year, implies that only 30% of a temporary disaster shock remains 
after one year; that is, recoveries are rapid. Note, however, that recovery refers only to the undoing of the effects from the 
temporary shock, φit −ηit in equation (7). The economy’s consumption approaches, in the long run, a level that depends on 
the permanent part of the shock, ηit . This channel implies that there can be a great deal of long-run consequence from a 
disaster—depending on the realizations of ηit while the disaster state prevails.

The estimated mean of the disaster shock, φit , is −0.079; that is, consumption falls on average by about 8% in the first 
year of a disaster. (Note that this mean applies to a truncated normal distribution; that is, one that admits only negative 
values of the shock.) The estimated standard deviation, σφ , of this shock is 0.057. Hence, there is considerable dispersion 
in the distribution of first-year disaster sizes. The dispersion in cumulative disaster sizes depends also on the stochastic 
duration of disaster states, which depends on the transition probabilities given in equations (2) and (3).

The estimated mean of the permanent part of the disaster shock, ηit , is −0.028; that is, consumption falls on average in 
the long run by about 3% for each year of a disaster. (In this case, the mean applies to a normal distribution.) The estimated 
standard deviation, ση , is 0.148. Hence, there is a great deal of dispersion in the long-run consequences of a disaster.

3. LRR parameters. The final group of parameters in Table 1 concerns long-run risks (LRR), corresponding in equation (8)
to the term χi,t−1, which is the variable part of the long-run growth rate. The estimated value of ρχ , the AR(1) coefficient 
for χit in equation (5), is 0.73, which indicates substantial persistence from year to year. Recall that the shock to χit has a 
country-specific standard deviation, kσi,t−1, which evolves over time in accordance with the model of stochastic volatility 
in equation (6). The estimated value of ρσ , the AR(1) coefficient for σ 2

it , is 0.96, which indicates very high persistence from 
year to year.7 The baseline volatility, corresponding to the mean across countries of the σi , is 0.024.

In key respects, our estimated parameters for the LRR part of the model accord with those presented by Bansal and Yaron 
(2004) and in an updated version, Bansal, Kiku, and Yaron (2010). Our estimated ρχ of 0.73 compares to their respective 
values of 0.78 and 0.74 (when their monthly values are expressed in annual terms). Our estimated ρσ of 0.96 compares to 
their respective values of 0.86 and 0.99. Our estimated mean σi of 0.024 compares to their respective values of 0.027 and 
0.025.

From the perspective of equation (8), we can think of how the three components contribute to explaining the observed 
variations in the growth rate of consumption. Table 3 summarizes these results. The overall mean of the annual growth 
rate of per capita consumption, �cit , is 0.0201, and the means of the three parts are −0.0025 for rare events (RE), 0.0223 
for the long-run growth rate (of which the variable part is the long-run risk or LRR), and 0.0003 for the error term. When 
considering the relative contributions to the variance of �cit , the RE part has 53%, LRR has 10%, and the error term has 36%. 
Therefore, the RE part is roughly five times as important as LRR from the perspective of explaining variations in consumption 
growth rates.

The combination of the various parameters determines the size distribution of disasters and recoveries. Simulations 
reveal that the mean negative cumulative effect of a disaster on a country’s level of per capita consumption is 22%. This 
effect combines the first-year change with those in subsequent years until the transition occurs from a disaster to a normal 
state. If we condition on a disaster cumulating to at least 10%, the mean cumulative disaster size is 28%.8 As a comparison, 
Barro and Ursúa (2008, Fig. 1, p. 285) found a mean size of consumption disaster of 22% when conditioning on disasters of 
10% or more.

7 The estimated value of k is 0.71. This parameter determines the standard deviation of the shock in equation (5) compared to that in equation (4).
8 In Nakamura et al. (2013, p. 47), the effect of a “typical disaster is approximately a 27 percent fall in consumption.” This typical disaster corresponds 

roughly to our consideration of disasters that cumulate to contractions by at least 10%.
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Fig. 2. Decomposition of Demeaned Consumption Growth Gap for United Kingdom.

In our present analysis, the mean recovery turns out to cumulate to 44% of the prior decline. That is, on average, 56% 
of the fall in consumption during a disaster is permanent. Recoveries were not considered in Barro and Ursúa (2008). In 
Nakamura et al. (2013, p. 47), the typical recovery is estimated to be 48%.

Because the estimated standard deviation of the permanent part of the disaster shock, ση , is large, 0.15, there is consid-
erable variation across disasters in the extent of recovery. In fact, simulations of the estimated model reveal that 42 percent 
of disasters have recoveries that exceed 100%. That is, the estimated long-run effects of many disasters are positive for the 
level of per capita consumption. One possible explanation is the long-term “cleansing” effects of some wars and depressions 
on the quality of institutions, wealth distribution, and so on. However, the estimated long-run level effect is negative in the 
majority of cases.

3.2. Distinctions between RE and LRR

Unlike the claim that “cyclical risks” contain disaster risks in Bansal et al. (2010), the empirical results on the decomposi-
tion of growth gaps, defined in Section 2, indicate that RE and LRR are distinct risks. Figs. 2 and 3 depict the decomposition 
of demeaned consumption growth gaps for the United Kingdom and United States, respectively. Such figures illustrate the 
distinct features of the RE and LRR components. Based on the empirical identification of these components, we can summa-
rize the rare-event component as sporadic, drastic, and jumping outbursts and the long-run growth rates as persistent, moderate, 
and smooth fluctuations, respectively.

The σi,t−1uit terms are essentially sequences of independent shocks, and the difference between R E DM
it and σi,t−1uit

terms are apparent. The fundamental distinctions between R E DM
it and the long-run growth rate (or χi,t−1, the persistent 

component of consumption growth) are as follows.
First, χi,t−1 is persistent, while R E DM

it is not. Many rare macroeconomic events burst out suddenly and unexpectedly, 
causing drastic changes (mostly declines) in consumption and output. Previous studies show that most of the observed 
macroeconomic disasters happened in periods of world disasters, such as World Wars I and II, the Great Depression, and the 
Great Influenza Epidemic and in periods of idiosyncratic disasters, such as regional wars, coups, and revolutions. Figs. 2 and 
3 visualize the sporadic outbursts of R E DM

it —oscillating sharply during event periods and diminishing quickly afterwards—
and the persistent and smooth fluctuations of χi,t−1.

Second, the volatilities of R E DM
it and χi,t−1 are different. From the computation in Table 3 and the decomposition of 

demeaned growth gaps illustrated in Figs. 2 and 3, we see that the volatility of R E DM
it is significantly larger than that of 

χi,t−1.
Third, R E DM

it and χi,t−1 have different durations. In theory, the movement of χi,t−1 is random and non-periodic. How-
ever, the empirical results indicate that the long-run growth rate fluctuates up and down with a certain pattern, a form 
of cycle, which we call “long-run growth cycles.” The estimation of the model shows that the durations of rare events are 
much shorter than those of long-run growth cycles. The average durations of consumption disasters are 4.2 years when we 
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Fig. 3. Decomposition of demeaned consumption growth gap for United States.

Fig. 4. Fitted model for Chile.

apply peak-to-trough measurement to the data, and are 5.0 years within the estimated model. In contrast, the long-run 
growth cycles persist much longer (Figs. 2 and 3).

3.3. Six illustrative countries

Figs. 4–9 describe the detailed dynamics of the model by considering the time evolution of the main variables for 
six illustrative countries: Chile, Germany, Japan, Russia, United Kingdom, and United States. An online appendix contains 
comparable figures for the other countries in the sample. The figures show the evolution of each country’s posterior mean 
of the disaster state, Iit , the disaster shock, Iitφit , the permanent part of the disaster shock, Iitηit , the variable part of 
the long-run growth rate, χit , and the stochastic volatility, σit . This volatility is expressed as a standard deviation and is 
multiplied by ten to be visible in the graphs. The other variables are expressed as quantities per year.

A general finding is that variables related to rare disasters behave very differently from those related to long-run risks. 
The disaster shocks, Iitφit and Iitηit , operate only on the rare occasions when the posterior mean of the disaster dummy 
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Fig. 5. Fitted model for Germany.

Fig. 6. Fitted model for Japan.

variable, Iit , is high. For example, for Germany (Fig. 5), the posterior disaster probability is close to one during World War I 
and its aftermath (including the hyperinflation) and during World War II and its aftermath. Similar patterns hold for Russia 
(Fig. 7) and in a milder form for the United Kingdom (Fig. 8). For Japan (Fig. 6), World War II is the main event. For the 
United States (Fig. 9), the prominent times of disaster are the Great Depression of the early 1930s and the aftermath of 
World War I (possibly reflecting the Great Influenza Epidemic). Chile (Fig. 4) has a much greater frequency of disaster, 
notably following the Pinochet coup of 1973.

Figs. 4–9 show that the disaster periods feature sharply negative shocks, Iitφit , that are particularly large in the wartime 
periods for Germany, Japan, and Russia. For the United States, the main disaster shocks are for the early 1930s and just after 
World War I.

The figures show that the permanent part of the disaster shocks, Iitηit , are also often large in magnitude during disaster 
periods. However, these shocks are much more diverse than the temporary shocks and are often positive—for example, in 
Germany during much of the 1920s and 1947, in Japan in 1945, and in Russia in the early 1920s and in 1943, 1945, and 
1946. These occurrences of favorable permanent shocks may reflect improvements in a country’s prospects for the coming 
post-war or post-financial-crisis environment. An interesting extension would relate these measured permanent disaster 
shocks to observable variables, such as military outcomes or institutional/legal changes.
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Fig. 7. Fitted model for Russia.

Fig. 8. Fitted model for United Kingdom.

In contrast to the disaster variables, the long-run-risk variables, χit and σit , exhibit much smoother, low-frequency 
evolution, as shown in Figs. 4–9. (In Table 3, the first-order autocorrelation of the long-run growth rate term is 0.88.) 
The variable χit indicates the excess of the projected growth rate of per capita consumption (over a persisting interval) 
from its long-run mean, which averaged 0.020 per year for the countries in our sample. For the United States (Fig. 9), the 
estimated χit exceeds 0.010 for 1962-67, 1971, 1982-85, and 1997-98—recent periods that are typically viewed as favorable 
for economic growth. At earlier times, this variable exceeds 0.010 for 1933-36 (recovery from the Great Depression), 1898, 
and 1875-79 (resumption of the gold standard). On the down side, the estimated χit is negative and larger than 0.010 in 
magnitude for 2007-09 (Great Recession), 1990, 1979, 1910-13, 1907, 1882-93, 1859-65, and 1852-55.

For the other illustrative countries, the estimated χit is particularly high in Chile for 1986-96, 2003-06, and 2009-11; 
in Germany for 1945-71; in Japan for 1945-72; in Russia for 1999-2011; and in the United Kingdom for 1983-88 and 
1995-2002. Bad periods for χit include Russia in 1989-97 and the United Kingdom in 2007-11.

The estimated stochastic volatility, gauged by the standard deviation, σit , is even smoother than the estimated χit . In 
the figures, the United States, Germany, and Japan exhibit the frequently mentioned pattern of moderation, whereby the 
estimated σit reaches low points of 0.0115 for the United States in 2000, 0.0106 for Germany in 1995, and 0.0117 for Japan 
in 1999. In all three cases, σit ticks up going toward 2012. As a contrast, Russia experiences a sharp rise in the estimated 
σit from 0.0142 in 1973 to 0.0343 in 2007.
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Fig. 9. Fitted model for United States. 
Note for Figs. 4–9: The probability of a rare event is the posterior mean of the rare-event dummy variable Iit (for country i at time t), φit is the rare-event 
shock, ηit is the permanent part of the rare-event shock, χit is the evolving part of the long-run growth rate, σit is stochastic volatility (the standard 
deviation associated with the shocks to growth rates of potential consumption and χit ), and μi is the long-run mean growth rate of consumption. See 
equations (1)–(7) in the text.

4. Asset pricing

4.1. Framework

The asset-pricing implications of the estimated model are analyzed following Mehra and Prescott (1985), Nakamura et 
al. (2013), and other studies. To delink the coefficient of relative risk aversion, CRRA, from the intertemporal elasticity of 
substitution, IES, we assume that the representative agent has Epstein and Zin (1989)-Weil (1990) or EZW preferences. For 
these preferences, Epstein and Zin (1989) show that the return on any asset satisfies the condition

Et

[
β(1−γ )/(1−θ)

(
Ct+1

Ct

)−θ(1−γ )/(1−θ)

R(θ−γ )/(1−θ)

w,t+1 Ra,t+1

]
= 1, (9)

where subjective discount factor = β , CRRA = γ , IES = 1/θ , Ra,t+1 is the gross return on asset a from t to t +1, and R w,t+1
is the corresponding gross return on overall wealth. Overall wealth in our model equals the value of the equity claim on a 
country’s consumption (which corresponds to GDP for a closed economy without capital or a government sector).

Since the model cannot be solved in closed form, we adopt a numerical method that follows Nakamura et al. (2013, 
p. 56, n. 26). Specifically, Equation (9) gives a recursive formula for the price-dividend ratio (PDR) of the consumption claim, 
and the iteration procedure finds the fixed point of the corresponding function. Then the pricing of other assets follows 
from equation (9).

The asset-pricing implications of the model depend on the parameter estimates from Table 1, along with values of CRRA 
(γ ), IES (1/θ ), and the subjective discount factor (β). The macroeconomics and finance literatures have debated appropriate 
values for the IES. For example, Hall (1988) estimates the IES to be close to zero, Campbell (2003) and Guvenen (2009) claim 
that it should be less than 1, Seo and Wachter (2016) assume that the IES equals 1, Bansal and Yaron (2004) use a value 
of 1.5, and Barro (2009) adopts Gruber’s (2013) empirical analysis to infer an IES of 2. Nakamura et al. (2013) show that 
low IES values, such as IES ≤ 1, are inconsistent with the observed behavior of asset prices during consumption disasters. 
Moreover, as stressed by Bansal and Yaron (2004), IES > 1 is needed to get the “reasonable” sign (positive) for the effect of 
a change in the expected growth rate on the price-dividend ratio for an unlevered equity claim on consumption. Similarly, 
Barro (2009) notes that IES > 1 is required for greater uncertainty to lower this price-dividend ratio. For these reasons, our 
main analysis follows Gruber (2013) and Barro (2009) to use IES = 2 (θ = 0.5).

Another parameter needed for the calculation of asset pricing statistics is the average corporate debt-equity ratio ς which 
determines the financial leverage of the economy. As mentioned in Nakamura et al. (2013), the Federal Reserve’s Flow-of-
Funds Accounts for recent years indicate that the debt-equity ratio for US nonfinancial corporations is roughly one-half. In 
our calculation of the baseline model, we follow Nakamura et al. (2013) to take ς = 0.5.
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4.2. Matching criterion: fitting the risk-free rate and return on levered equity

In this subsection, we determine the values of γ and β to fit observed long-term averages of real rates of return on 
corporate equity and short-term government bills (our proxy for risk-free claims). We will discuss an alternative matching 
criterion later. An important point here is that the parameters that describe the stochastic process for consumption were 
chosen solely to accord with the panel data on consumption and not to fit the data on asset returns.

For 17 countries with long-term data on asset returns, we find from an updating of Barro and Ursúa (2008, Table 5) that 
the average (arithmetic) real rate of return is 7.90% per year on levered equity and 0.75% per year on government bills (see 
Table 4, column 1). Hence, the average levered equity premium is 7.15% per year. Therefore, we calibrate the model to fit a 
risk-free rate of 0.75% per year and a levered equity premium of 7.15% per year. It turns out that, to fit these observations, 
our main analysis requires γ = 5.9 and β = 0.973.

We follow Nakamura et al. (2013) and Bansal and Yaron (2004) by making the assumption for asset pricing that the 
representative agent is aware contemporaneously of the values of the underlying shocks. These random variables include 
the indicators for a world and country-specific disaster state, the temporary and permanent shocks during disasters, the 
current value of the long-run growth rate, and the current level of volatility. We think that the assumption of complete 
current information about these underlying shocks is unrealistic. However, we also found that relaxation of this assumption 
had only a minor impact on the equity premium delivered by the model. The effect on the model’s volatility of equity 
returns was more important.9

1. Empirical evaluation. Table 4, column 1, shows target values of various asset-pricing statistics. These targets are the 
mean and standard deviation of the risk-free rate, r f , the rate of return on levered equity, re , and the equity premium, 
re − r f ; the Sharpe ratio10; and the mean and standard deviation of the dividend yield. These target statistics are inferred 
from averages in the cross-country panel data described in the notes to Table 4.

Table 4, column 2, refers to our baseline model, which combines rare events (RE) and long-run risks (LRR). Given the 
parameter estimates from Table 1, along with IES = 1/θ = 2 (and a corporate debt-equity ratio of 0.5), the model turns out 
to require a coefficient of relative risk aversion, γ , of 5.9 and a subjective discount factor, β , of 0.973 (in an annual context) 
to fit the target values of r f = 0.75% per year and re − r f = 7.15% per year. Heuristically, we can think of γ as chosen to 
attain the target equity premium, with β selected to get the right overall level of rates of return.

As comparisons, Barro and Ursúa (2008) and Barro and Jin (2011) required a coefficient of relative risk aversion, γ , of 
3-4 to fit the target average equity premium. In these analyses, the observed macroeconomic disasters were assumed to 
be fully permanent in terms of effects on the level of per capita consumption. In Nakamura et al. (2013), the required γ
was higher—around 6.4—mostly because the incorporation of post-disaster recoveries meant that observed disasters had 
smaller effects on the equilibrium equity premium. A required γ of 6.4 may be unrealistically high, and one motivation for 
the present analysis was that the incorporation of long-run risks (LRR) into the rare-disaster framework would reduce the 
required γ . In fact, there is a modest reduction—to 5.9—and, therefore, the required degree of risk aversion may still be too 
high.

Table 4, column 2, shows that the baseline model substantially underestimates measures of volatility. Specifically, the 
model implied standard deviation of re (0.096) is much lower than that observed in the data (0.245 in column 1). We had 
thought that the incorporation of long-run risks, especially stochastic volatility, would help to improve the model’s fit with 
respect to the volatility of re .11 However, even with the LRR component included, this volatility is underestimated. We think 
that a major remaining gap is the omission of time-varying disaster probability, p (or time variation in the distribution 
of disaster sizes). We plan to make this extension, but the required numerical analysis is an order-of-magnitude more 
complicated than that in our present model.

The Sharpe ratio in the baseline model, 0.83 (column 2), is substantially higher than the value 0.29 found in the data 
(column 1). However, this result is essentially a restatement of the model’s understatement of the volatility of the return 
on equity (or of the equity premium). That is, the values of γ and β are determined to match the average equity premium, 
which is the numerator of the Sharpe ratio. Then the Sharpe ratio is too high because the model’s estimated volatility of 
the equity premium (the denominator of the ratio) is too low (when evaluated using the specified γ and β). This finding of 
an excessive Sharpe ratio applies also to the models considered next.

The remaining columns of Table 4 divide up the baseline model—which incorporates the rare events, RE, and long-run 
risks, LRR, pieces—into individual contributions to the explanations of means and volatilities of returns. In all cases, we 
retain the parameter estimates for the consumption process from Table 1, along with IES = 1/θ = 2 (and a debt-equity ratio 

9 We analyzed incomplete current information about the extent to which a disaster shock was temporary or permanent. This extension introduces effects 
involving the time resolution of uncertainty. This time resolution would not matter in the standard case of time-additive utility, where the coefficient of 
relative risk aversion, γ , equals θ , the reciprocal of the intertemporal elasticity of substitution. In our case, where γ > θ , people prefer early resolution of 
uncertainty, and incomplete current information about the permanence of realized shocks affects the results. However, we found quantitatively that the 
impact on the model’s equity premium was minor.
10 This value is the ratio of the mean of re − r f to its standard deviation.
11 The observed volatility of r f also involves the impact of realized inflation on the real return on a nominally denominated asset. This consideration is 

not present in the underlying real model.
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Table 4
Asset-pricing statistics: data and alternative models.

(1) (2) (3) (4) (5) (6)

Statistic Data Baseline 
RE & LRR

RE only LRR only RE & LRR w/o 
stochastic volatility

RE w/ perm. 
shocks only

mean r f 0.0075 0.0075 0.0075 0.0075 0.0075 0.0075
mean re 0.0790 0.0790 0.0790 0.0790 0.0790 0.0790
mean re − r f 0.0715 0.0715 0.0715 0.0715 0.0715 0.0715
σ(r f ) 0.0850 0.0253 0.0202 0.0121 0.0241 0.0183
σ(re) 0.245 0.0974 0.0861 0.0742 0.0963 0.0765
σ(re − r f ) 0.245 0.0872 0.0802 0.0686 0.0861 0.0698
Sharpe ratio 0.295 0.820 0.893 1.04 0.830 1.03
mean div. yield 0.0449 0.0486 0.0493 0.0457 0.0486 0.0498
σ (div. yield) 0.0175 0.0160 0.0119 0.00920 0.0147 0.0114
γ – 5.86 6.39 17.8 5.98 6.90
β – 0.973 0.971 0.977 0.973 0.972
mean re − r f with baseline parameters – 0.0715 0.0569 0.0228 0.0685 0.0452

Notes: r f is the risk-free rate (proxied by real returns on short-term government bills), re is the real total rate of return on corporate equity, σ values are 
standard deviations, Sharpe ratio is the ratio of mean re − r f to σ(re − r f ), and div. yield is the dividend yield. A debt-equity ratio of 0.5 is assumed in the 
calculations for each model.

Data are means over 17 countries (Australia, Denmark, Finland, France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Spain, Sweden, 
Switzerland, U.K., U.S., Chile, and India) with long-term returns data, as described in Barro and Ursúa (2008, Table 5) and updated to 2014. The main 
underlying source is Global Financial Data. For the dividend yield, the means are for 8 countries with at least 90 years of data (Australia, France, Germany, 
Italy, Japan, Sweden, U.K., and U.S.). These data are from Global Financial Data and updated through 2014.

The third- and second-to-last rows give the values of γ (coefficient of relative risk aversion) and β (discount factor) required in each model to match 
the observed average values of the risk-free rate, r f , and the equity return, re . RE & LRR is the baseline model, which includes all the elements of rare 
events (R E) and long-run risks (LRR). The other columns give results with various components eliminated. RE only eliminates the LRR parts. LRR only
eliminates the R E parts. RE & LRR, no stochastic vol. eliminates only the stochastic volatility part of LRR. RE perm. shocks only eliminates everything except the 
permanent-shock part of R E .

The last row gives the average equity premium of each model when γ and β take on their baseline values, i.e., γ = 5.89 and β = 0.973.

of 0.5). We then recalculate for each case the values of γ and β needed to match the observed averages of 0.75% for r f and 
7.15% for re − r f . Given these tailored parameter values, each model matches the target averages of r f and re .

Table 4, column 3 (RE only), shows results with the omission of the long-run risks, LRR, parts of the model. In this case, 
the value of γ has to be 6.4, rather than 5.9, for the model to generate the observed average equity premium of 0.072. From 
this perspective, the inclusion of LRR in the baseline model (column 2) generates moderate improvements in the results; 
that is, the lower required value of γ seems more realistic. Viewed alternatively, if we retain the baseline parameter values 
of γ = 5.9 and β = 0.973, the model’s average equity premium would fall from 0.072 (column 2) to 0.057 (column 3).

With regard to the standard deviation of re , the model with rare events only (column 3) has a value of 0.086, whereas 
the model that incorporates LRR has the higher value of 0.096 (column 2). In this sense, the incorporation of LRR improves 
the results on volatility of equity returns. However, as already noted, the standard deviation of re in the baseline model 
(column 2) still understates the observed value of 0.245 (column 1).

Table 4, column 4 (LRR only), shows the results with the omission of the rare-events, RE, parts; that is, with only the 
long-run-risk part, LRR, included. In this case, the value of γ required to fit the target mean equity premium of 0.072 is 
18, an astronomical degree of risk aversion.12 Hence, the omission of the RE terms makes the model clearly unsatisfactory 
with respect to explaining the average equity premium. Viewed alternatively, if we keep the baseline parameter values of 
γ and β , the model’s average equity premium would fall from 0.072 (column 2) to 0.023 (column 4).13 ,14 With regard to 
the standard deviation of re , the LRR only model has a value of 0.074, below the values of 0.086 from the RE only model 
(column 3), 0.096 from the baseline model (column 2), and 0.245 in the data (column 1).

Table 4, column 5, shows the effects from the omission of only the stochastic volatility part of the long-run risks, LRR, 
model. In this case, the value of γ required to match the observed average equity premium is 6.0, not much higher than 
the value 5.9 in the baseline specification (column 2). Alternatively, if we retain the baseline parameter values of γ and β , 
the model’s average equity premium would fall only slightly from 0.072 (column 2) to 0.069 (column 5). Therefore, to the 

12 Bansal and Yaron (2004) argued that a value of γ = 10 was sufficient, although that value is still much too high to be realistic. Our results differ mostly 
because Bansal and Yaron incorporate high leverage in the relation between dividends and consumption.
13 Bansal and Yaron’s (2004) calibration shows that when γ = 10, the equity premium predicted by the LRR model is 0.068; when γ = 7.5, the predicted 

equity premium is reduced to 0.040. The equity premium predicted by the LRR model would be much smaller than 0.040 if γ is further reduced to 5.9, 
the value that we estimated here. Thus, our predicted equity premium of 0.023 is close to the results in Bansal and Yaron (2004). See n. 5 for a related 
discussion.
14 Nakamura et al. or NSS (2017) model the correlation of shocks across countries, and there is a common world component in LRR. We do not introduce 

a world LRR component because it will make the model much more complicated to estimate and because the main results are unlikely to change. Similar 
to Bansal and Yaron (2004), NSS require γ = 9 to match the equity premium in the US data. The NSBU model, which encompasses only rare disasters, 
requires a γ of 6.4 to match the equity premium. This result coincides with our estimate from the RE only model (Table 4, column 3). Note that, in an 
integrated model like the one proposed in this study, we have to use a single value of γ for both RE and LRR. See n. 12 for a related discussion.
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extent that the inclusion of LRR improves the fit with regard to the equity premium, it is the evolution of the mean growth 
rate, not the fluctuation in the variance of shocks to the growth rate, that matters. With regard to the standard deviation of 
re , the value of 0.0963 in column 5 is very close to the value 0.0964 in the baseline model (column 2). In this sense, the 
incorporation of stochastic volatility contributes negligibly to explaining the volatility of equity returns.

Column 6 of Table 4 corresponds to using only the permanent-shock part of the rare-events, RE, model. In this case, 
the value of γ required to match the observed average equity premium is 6.9, not too much higher than the value 6.4 in 
column 3. This result shows that the main explanatory power of the RE model for the equity premium comes from the 
permanent parts of rare events. Recall in this context that earlier analyses, such as Barro and Ursúa (2008) and Barro and 
Jin (2011), assumed that all of the rare-event shocks had fully permanent effects on the level of per capita consumption. 
Alternatively, if we keep the baseline parameter values of γ and β , the model’s average equity premium falls from 0.057 
in the full RE model (column 3) to 0.045 (column 6). Hence, the exclusion of the temporary parts of RE shocks has only a 
moderate impact on the model’s average equity premium.

2. Analysis on parameter uncertainty. In the above discussion, we analyze the estimated values of γ and β when we 
fit the observed long-term averages of real rates of return on corporate equity and short-term government bills. A potential 
concern, raised by Chen et al. (2019), is that the estimated values of γ and β rely on the RE and LRR parameters, which are 
not known but are instead estimated from the panel data on consumption. This concern will be minor if the asset-pricing 
implications are robust to changes in the parameters in reasonably wide areas around the estimated values (as we later 
argue to be true). Chen et al. (2019) suggest that bringing in more data to identify the underlying parameters is an effective 
way to deal with this concern. For this reason, they think the estimations in Barro and Ursúa (2012) and Nakamura et al. 
(2013) work well. Therefore, it is worth noting that we utilize even more data in our present study.

To explore the robustness of the asset-pricing implications of the model, we now check the comparative statics of the 
asset-pricing statistics with respect to all the parameters used in our calculation. There are two sets of parameters in the 
calculation of asset-pricing statistics: one is the set of parameters for the consumption process, as estimated earlier, and the 
other set consists of the parameters for the agent’s preference, namely, CRRA γ , IES 1/θ , and subjective discount factor β , 
and the debt-equity ratio ς .

As with all MCMC estimation, the estimates of the set of parameters governing the consumption process are affected 
by the specification of prior distributions. To avoid having the prior distributions play a biased role, we choose to make 
the prior distributions as “uninformative” as possible. (See the detailed discussion about priors in Appendix A.3.) The data 
set we are using contains 4814 country-year observations (see Appendix A.1 for information about the data). This large 
macroeconomic sample helps to minimize the influence of the specification of priors.

Given the data set and priors, the MCMC estimation of parameters obeys the square root law: under regular conditions, 
statistical accuracy is inversely proportional to the square root of the Monte Carlo sample size, i.e., the length of the Markov 
chain used to calculate the posterior means of the parameters. According to Rosenthal (2017), under regular conditions, an 
MCMC asymptotic 95% confidence interval is given by [en − 4.48σ̂n√

n
, en + 4.48σ̂n√

n
], where en is the mean estimator, σ̂n is the 

standard deviation estimator, and n is the Monte Carlo sample size. In our case, for each parameter, en and σ̂n are listed in 
Table 1, and the Monte Carlo sample size n = 4,000,000. As the Monte Carlo sample size is very large, the 95% confidence 
interval will be so narrow that the lower and upper bounds of the confidence intervals will be almost indistinguishable 
from the posterior means. For this reason, for each parameter, we calculate the corresponding asset-pricing statistics when 
the specific parameter takes on values of en ± σ̂n

2 and other parameters are kept unchanged. The comparative statics of the 
asset-pricing statistics with respect to the parameters of the consumption process is shown in Table 5a and 5b.

For most of the parameters of the consumption process, the corresponding lower and upper values are relatively far apart, 
but the various asset-pricing statistics are close to those in the baseline model (Table 4, column 2). Generally speaking, if 
a change in a parameter increases the disaster risk or the long-run risk, then the model implied equity premium will be 
higher; otherwise, it will be lower. In Table 5a and 5b, the lowest model implied equity premium is 0.0678, which occurs 
when q10 takes on the lower value 0.694 or η takes on the upper value −0.0242. The highest model implied equity premium 
is 0.0769, which occurs when ση takes on the upper value 0.154. Note that 0.0678 and 0.0769 are only −5.2% and 7.6%, 
respectively, away from the baseline equity premium of 0.0715.

Table 6 shows how the results from the baseline model change with differences in the CRRA γ , subjective discount factor 
β , IES 1/θ , and debt-equity ratio ς . Column 1 has γ = 4.00, instead of the baseline value of 5.86. In other respects, the 
parameters are unchanged from those in Table 4, column 2. The reduction in γ lowers the model’s average equity premium 
from 0.072 (Table 4, column 2) to 0.032 (Table 6, column 1). Conversely, Table 6, column 4, has γ = 10.0. This increase in 
γ raises the model’s average equity premium to 0.222. Table 6, column 2 and 3 show the results for γ = 5.76 and 5.96, 
respectively. It is clear that the average equity premium is highly sensitive to the value of γ .

Table 6, column 5, has β = 0.963, instead of the baseline value of 0.973. The reduction in β raises r f and re and lowers 
the equity premium. Conversely, Table 6, column 6, has β = 0.983. This increase in β lowers r f and re and raises the equity 
premium.

Table 6, column 7, has IES = 1/θ = 1.5, instead of the baseline value of 2.0. This change lowers the model’s mean equity 
premium to 0.054. A further reduction in the IES to 1.1 (column 8) reduces the model’s average equity premium further, to 
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Table 5a
Asset-pricing statistics: baseline model with alternative consumption process parameters (Part I).

Parameter that deviates from 
the baseline model

p0 p1 q00 q10 q01 q11 ρz φ� η

Parameter value 0.0236 0.589 0.00554 0.694 0.334 0.839 0.289 −0.0260 −0.0323
mean r f 0.0085 0.0085 0.0077 0.0093 0.0079 0.0078 0.0075 0.0072 0.0053
mean re 0.0781 0.0781 0.0791 0.0771 0.0790 0.0789 0.0794 0.0796 0.0814
mean re − r f 0.0696 0.0696 0.0714 0.0678 0.0712 0.0711 0.0719 0.0724 0.0761
σ(r f ) 0.0243 0.0248 0.0252 0.0251 0.0252 0.0253 0.0255 0.0254 0.0253
σ(re) 0.0956 0.0960 0.0974 0.0959 0.0974 0.0975 0.0980 0.0982 0.0990
σ(re − r f ) 0.0858 0.0860 0.0873 0.0857 0.0873 0.0873 0.0879 0.0881 0.0888
Sharpe ratio 0.811 0.809 0.817 0.791 0.815 0.814 0.819 0.821 0.858
mean div. yield 0.0469 0.0470 0.0483 0.0464 0.0481 0.0482 0.0487 0.0488 0.0512
σ (div. yield) 0.0154 0.0156 0.0159 0.0157 0.0159 0.0159 0.0161 0.0160 0.0162

Parameter that deviates from 
the baseline model

p0 p1 q00 q10 q01 q11 ρz φ� η

Parameter value 0.0346 0.728 0.00774 0.744 0.386 0.876 0.319 −0.0110 −0.0242
mean r f 0.0066 0.0060 0.0073 0.0054 0.0072 0.0071 0.0075 0.0078 0.0096
mean re 0.0800 0.0812 0.0796 0.0818 0.0797 0.0798 0.0793 0.0791 0.0774
mean re − r f 0.0734 0.0752 0.0723 0.0763 0.0726 0.0726 0.0718 0.0714 0.0678
σ(r f ) 0.0262 0.0259 0.0255 0.0255 0.0254 0.0254 0.0251 0.0252 0.0253
σ(re) 0.0991 0.100 0.0982 0.0999 0.0981 0.0981 0.0976 0.0974 0.0967
σ(re − r f ) 0.0887 0.0897 0.0879 0.0897 0.0879 0.0879 0.0873 0.0872 0.0865
Sharpe ratio 0.828 0.838 0.823 0.851 0.826 0.827 0.822 0.819 0.783
mean div. yield 0.0501 0.0509 0.0490 0.0512 0.0491 0.0491 0.0486 0.0484 0.0461
σ (div. yield) 0.0165 0.0165 0.0161 0.0163 0.0161 0.0161 0.0159 0.0160 0.0158

Note: These results modify the baseline model from Table 4, column 2.

Table 5b
Asset-pricing statistics: baseline model with alternative consumption process parameters (Part II).

Parameter that deviates from 
the baseline model

σ �
φ ση ρχ ρσ k μi σ 2

i σωi σνi

Parameter value 0.0834 0.143 0.713 0.956 0.659 0.0182 0.000472 0.0000595 0.00375
mean r f 0.0079 0.0096 0.0079 0.0076 0.0080 0.0068 0.0083 0.0079 0.0075
mean re 0.0790 0.0768 0.0784 0.0791 0.0782 0.0780 0.0779 0.0786 0.0793
mean re − r f 0.0711 0.0672 0.0705 0.0715 0.0703 0.0712 0.0696 0.0707 0.0718
σ(r f ) 0.0252 0.0249 0.0252 0.0253 0.0249 0.0253 0.0249 0.0252 0.0253
σ(re) 0.0971 0.0962 0.0961 0.0971 0.0960 0.0974 0.0953 0.0987 0.0976
σ(re − r f ) 0.0868 0.0863 0.0860 0.0869 0.0862 0.0872 0.0855 0.0887 0.0874
Sharpe ratio 0.819 0.779 0.819 0.823 0.815 0.817 0.814 0.797 0.822
mean div. yield 0.0483 0.0462 0.0478 0.0485 0.0477 0.0503 0.0474 0.0478 0.0486
σ (div. yield) 0.0159 0.0156 0.0157 0.0159 0.0156 0.0161 0.0156 0.0158 0.0160

Parameter that deviates from 
the baseline model

σ �
φ ση ρχ ρσ k μi σ 2

i σωi σνi

Parameter value 0.0954 0.154 0.747 0.970 0.752 0.0221 0.000672 0.000109 0.00655
mean r f 0.0071 0.0052 0.0070 0.0074 0.0070 0.0082 0.0067 0.0071 0.0075
mean re 0.0797 0.0821 0.0805 0.0796 0.0805 0.0807 0.0809 0.0803 0.0794
mean re − r f 0.0726 0.0769 0.0735 0.0723 0.0735 0.0725 0.0742 0.0732 0.0719
σ(r f ) 0.0255 0.0257 0.0255 0.0254 0.0257 0.0253 0.0258 0.0255 0.0253
σ(re) 0.0985 0.0994 0.0998 0.0985 0.0996 0.0982 0.100 0.0980 0.0981
σ(re − r f ) 0.0885 0.0891 0.0895 0.0883 0.0891 0.0880 0.0896 0.0877 0.0880
Sharpe ratio 0.821 0.864 0.821 0.818 0.825 0.823 0.828 0.834 0.817
mean div. yield 0.0489 0.0512 0.0496 0.0489 0.0497 0.0469 0.0500 0.0495 0.0486
σ (div. yield) 0.0160 0.0164 0.0163 0.0161 0.0164 0.0159 0.0164 0.0162 0.0160

Note: These results modify the baseline model from Table 4, column 2.

0.029. Therefore, changes in the IES matter for the equity premium but, in a plausible range, not nearly as much as changes 
in γ .15

15 In a pure i.i.d. model, as in Barro (2009), the equity premium would not depend on the IES. The dependence on the IES arises in our model because of 
the dynamics of disasters and recoveries. See Nakamura et al. (2013) for discussion.
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Table 6
Asset-pricing statistics: baseline model with alternative γ , β , IES, and ς .

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Parameter that deviates from 
the baseline model

γ γ γ γ β β 1/θ 1/θ ς ς

Parameter value 4.00 5.76 5.96 10.0 0.963 0.983 1.50 1.10 1.00 2.00
mean r f 0.0250 0.0088 0.0061 −0.0665 0.0204 −0.0055 0.0166 0.0300 0.0075 0.0075
mean re 0.0565 0.0775 0.0806 0.156 0.0869 0.0719 0.0708 0.0592 0.1027 0.1492
mean re − r f 0.0315 0.0686 0.0745 0.222 0.0665 0.0773 0.0542 0.0292 0.0952 0.1417
σ(r f ) 0.0246 0.0253 0.0252 0.0222 0.0256 0.0249 0.0317 0.0424 0.0253 0.0253
σ(re) 0.0877 0.0969 0.0978 0.103 0.0950 0.100 0.0828 0.0761 0.125 0.178
σ(re − r f ) 0.0767 0.0868 0.0877 0.0983 0.0848 0.0905 0.0750 0.0800 0.116 0.170
Sharpe ratio 0.411 0.791 0.849 2.26 0.784 0.855 0.722 0.365 0.824 0.834
mean div. yield 0.0271 0.0471 0.0501 0.124 0.0564 0.0415 0.0413 0.0303 0.0625 0.0904
σ (div. yield) 0.0140 0.0159 0.0160 0.0157 0.0169 0.0149 0.0171 0.0187 0.0292 0.0553

Note: These results modify the baseline model from Table 4, column 2.

Table 6, column 9, has ς = 1.0, instead of the baseline value of 0.5. This change increases the equity premium to 0.095 
and leaves r f unchanged. A further increase in ς to 2.0 (column 10) raises the model’s average equity premium further, to 
0.142. Therefore, the average equity premium is sensitive to the value of ς .16

4.3. Alternative matching criterion

Previous studies emphasize the importance of matching the Sharpe ratio in evaluating the pricing kernel implications of 
economic models. (See, e.g., Hansen and Jagannathan (1991).) Thus, an alternative criterion is to match the Sharpe ratio as 
well as r f and re . Equivalently, we can think of matching the volatility of re -r f , as well as the means of re and r f . A natural 
way to set up the matching criterion is to measure the “distance” between the model implied values and the target values 
of r f , re , and the Sharpe ratio.

If we attach equal importance to matching the mean values of r f and re and the Sharpe ratio, we may adopt the following 
loss function to estimate the values of γ and β:

L
(
r f , re, S

) = (r f − r f ,T )2

σ 2(r f )
+ (re − re,T )2

σ 2(re)
+ (S − S T )2

σ 2(S)
,

where r f , re , and S are the model implied mean values of r f and re and the Sharpe ratio, respectively, r f ,T , re,T , and S T

are the target values of r f , re , and S , respectively, and σ 2(r f ), σ 2(re), and σ 2(S) are the variances of r f and re and the 
Sharpe ratio, respectively. The target values and the standard deviations are estimated from the dataset of Global Financial 
Data. The target values of r f , re , and S , σ(r f ), and σ(re) are reported in Table 4, and σ(S) is estimated to be 0.087.17 Thus, 
the functional form of the loss function L(r f , re, S) is as follows:

L
(
r f , re, S

) = (r f − 0.0075)2

0.0852
+ (re − 0.079)2

0.2452
+ (S − 0.295)2

0.0872
.

As r f , re , and S are functions of (γ , β), we have the following minimization problem

min
(γ ,β)

L(γ ,β), (10)

where L(γ , β) = L(r f (γ , β), re(γ , β), S(γ , β)).
1. The estimation of γ and β according to matching criterion (10). The minimization of the loss function L(γ , β) gives

arg min
(γ ,β)

L(γ ,β) = (3.19, 0.988)

with (r f , re, S) = (0.0127, 0.0340, 0.295) and L(3.19, 0.988) = 0.0374.

16 In the LRR models, e.g., Bansal and Yaron (2004), the leverage ratio takes on the value 3. A larger leverage ratio helps to match a higher equity premium 
and, thereby, lowers the required value of γ . Although the leverage ratio in the LRR models does not coincide with financial leverage, roughly speaking, 
a leverage ratio of 3 in the LRR model corresponds to a debt-equity ratio in our context of 2, in the sense of the impact on the equity premium. In this 
study, the dividend process is assumed to be the same as the consumption process, and we follow Nakamura et al. (2013) to take the debt-equity ratio to 
be 0.5. An extension to include a separate dividend process to which a higher “leverage ratio” applies can be the topic of a future study.
17 The estimation of σ(S) is done as follows. Using the data from Global Financial Data, we calculate the Sharpe ratio for each of the 17 countries 

aforementioned. Then the estimate of σ(S) is calculated as the sample standard deviation of the 17 Sharpe ratios.
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Table 7
Asset-pricing statistics: data & various models under alternative matching criteria.

(1) (2) (3) (4) (5) (6)

Statistic Data RE & LRR RE only LRR only RE & LRR w/o 
stochastic volatility

RE w/ perm. 
shocks only

mean r f 0.0075 0.0127 0.0136 0.0127 0.0136 0.0137
mean re 0.0790 0.0340 0.0317 0.0317 0.0343 0.0295
mean re − r f 0.0715 0.0214 0.0182 0.0190 0.0207 0.0158
σ(r f ) 0.0850 0.0237 0.0194 0.0130 0.0231 0.0181
σ(re) 0.245 0.0831 0.0682 0.0704 0.0812 0.0613
σ(re − r f ) 0.245 0.0723 0.0614 0.0642 0.0701 0.0534
Sharpe ratio 0.295 0.295 0.296 0.295 0.296 0.295
mean div. yield 0.0449 0.00837 0.00470 0.00424 0.00817 0.00286
σ (div. yield) 0.0175 0.0105 0.00819 0.00497 0.00969 0.00793
γ – 3.19 3.85 4.93 3.38 3.91
β – 0.988 0.988 0.990 0.988 0.990
L(γ ,β) – 0.0374 0.0425 0.0411 0.0384 0.0462

Notes: For the first through the fourth-to-last rows, the data, and the setting of each model, see the notes of Table 4.
The third- and second-to-last rows give the values of arg min(γ ,β) L(γ , β) as in (10). The last row gives the corresponding minimum of the loss function 

L(γ , β) for each model.

It is natural to see that arg min(γ ,β) L(γ , β) will generate higher r f and lower re than what we get in the previous 
subsection so as to lower the model implied Sharpe ratio S . The noticeable result is that arg min(γ ,β) L(γ , β) will give an 
almost perfect match for the Sharpe ratio, and this result is basically unchanged unless we make the denominator σ 2(S)

much larger. For instance, if we take L(r f , re, S) to be

L
(
r f , re, S

) = (r f − 0.0075)2

0.0852
+ (re − 0.079)2

0.2452
+ (S − 0.295)2

0.2002
,

we will have

arg min
(γ ,β)

L(γ ,β) = (3.20, 0.987)

(
r f , re, S

) = (0.0131, 0.0346,0.298),

and

L(3.20, 0.987) = 0.0373.

As we can see, the model implied Sharpe ratio will now be 0.298, which is still very close to the target value of 0.295. 
Empirical calculation shows that the estimation of (γ , β) according to criterion (10) is robust to changes in the values of 
the denominators σ 2(r f ), σ 2(re), and σ 2(S).

An important point is that bringing in the Sharpe Ratio as part of the criterion for choosing the preference parameters 
results in a more reasonable estimate of the risk-aversion coefficient, γ , which becomes 3.2. The downside, however, is that 
the model now performs poorly with respect to the equity premium, which is estimated to have a mean of only 0.021. From 
the comparison of the results for the two different matching criteria, we see there is a “trade-off” in matching the equity 
premium and Sharpe ratio at the same time, and it is still challenging to obtain good matches for both simultaneously.

2. Comparison of different models. Under the alternative matching criterion, the asset-pricing statistics implied by each 
model are shown in Table 7. The RE & LRR model is by far the best: It gives the smallest value of the loss function L(γ , β), 
delivers the highest equity premium of 0.021, and implies the lowest value of γ . The RE & LRR w/o stochastic volatility model 
is ranked second best, and the LRR only model performs slightly better than the RE only model. Note, however, that a key 
finding under this alternative criterion is that the highest implied equity premium (by the RE & LRR model) is only 0.021, 
which is much smaller than the observed value of 0.072.

5. Time-varying disaster probability

We think that an allowance for stochastic variation in disaster probability may be an important extension to account for 
the remaining shortcomings in our analysis. A number of rare-disaster models argue that volatility of the disaster probability, 
p, or parameters that describe the size distribution of disasters is important for understanding aspects of asset pricing, 
notably for pricing of stock-index options. In this context, Gabaix (2012) emphasizes time variation in the distribution of 
disaster sizes, whereas Seo and Wachter (2016), Siriwardane (2015), and Barro and Liao (2020) stress changes in disaster 
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probability. For most purposes, the time-varying disaster variable can be viewed as a composite of disaster probability and 
disaster size density.18

In the “normal” situation (associated with θ <1, so that the intertemporal elasticity of substitution exceeds 1), a rise in 
disaster probability or the typical size of a disaster lowers the price of equity. Through this channel, variations in disaster 
probability and sizes would impact the volatility of the rate of return on equity (and, hence, affect the Sharpe Ratio). There 
may also be less direct effects on means, such as the average equity premium.

The extension to allow for stochastic disaster probability is incorporated into the ongoing research of Huang et al. (2019). 
Due to the complexity of the numerical analysis, long-run risks have not yet been included in this analysis. In the setting 
where the matching criterion does not consider the Sharpe Ratio, the required coefficient of relative risk aversion γ is 
further reduced to 5.2. However, the model’s estimated mean Sharpe ratio is 0.675, better than previous results but still too 
high when compared with data. More satisfactory results in this regard will likely require the reintroduction of LRR into the 
model.

6. Concluding observations

Rare events (RE) and long-run risks (LRR) are complementary approaches for characterizing the long-term evolution of 
macroeconomic variables such as GDP and consumption. These approaches are also complementary for understanding asset-
pricing patterns, including the averages of the risk-free rate and the equity premium and the volatility of equity returns. 
We constructed a model with RE and LRR components and estimated this joint model using long-term data on per capita 
consumption for 42 economies. This estimation allows us to distinguish empirically the forces associated with RE from those 
associated with LRR.

Rare events (RE) typically associate with major historical episodes, such as the world wars and the Great Depression and 
possibly the Great Influenza Pandemic (and also the ongoing coronavirus pandemic, but not the recent Great Recession). In 
addition to these global forces, the data reveal many disasters that affected one or a few countries. The estimated model 
determines the frequency and size distribution of macroeconomic disasters, including the extent and speed of eventual 
recovery. The distribution of recoveries is highly dispersed; that is, disasters differ greatly in terms of the relative importance 
of temporary and permanent components.

In contrast to RE, the long-run risks (LRR) parts of the model reflect gradual and evolving processes that apply to 
changing long-run growth rates and volatility. Some of these patterns relate to familiar notions about moderation and to 
times of persistently low or high expected growth rates.

We applied the estimated time-series model of consumption to asset pricing. A match between the model and observed 
average rates of return on equity and risk-free bonds requires a coefficient of relative risk aversion, γ , of 5.9. Most of the 
explanation for the equity premium derives from the RE components of the model, although the LRR parts make a moderate 
contribution. When we apply an alternative matching criterion that takes the Sharpe ratio into account, the LRR only model 
performs slightly better than the RE only model. Under the alternative criterion, the Sharpe ratio will be fit well, but the 
implied value of γ for the latter is substantially smaller and the model implied mean equity premium is very low. In other 
words, it is difficult to fit the equity premium and Sharpe ratio well at the same time.

We had thought that the addition of LRR to the RE framework would help to match the observed volatility of equity 
returns. However, the joint model still understates the volatility found in the data. Further study indicates that this aspect of 
the model improves if we allow for stochastic evolution of the probability or size distribution of disasters. Another extension 
that may further lower the required value of γ and improve the fit for the Sharpe ratio is to include a separate dividend 
process to which a higher leverage ratio applies.

Appendix A

A.1. Data used in this study

This study uses an enlarged version of the Barro-Ursúa macroeconomic data set (2010). The original data set contains 
annual consumption series for 42 economies up to 2009, and we expand it to 2012. This data set covers the major economies 
in the world: Argentina, Australia, Austria, Belgium, Brazil, Canada, Chile, China, Colombia, Denmark, Egypt, Finland, France, 
Germany, Greece, Iceland, India, Indonesia, Italy, Japan, Korea, Mexico, Malaysia, Netherlands, New Zealand, Norway, Peru, 
Philippines, Portugal, Russia, South Africa, Singapore, Spain, Sri Lanka, Sweden, Switzerland, Taiwan, Turkey, United Kingdom, 
Uruguay, United States, and Venezuela.

The availability of uninterrupted annual data varies across economies. To best utilize the rich information contained in 
the data set, we adopt the longest possible uninterrupted series between 1851 and 2012 for each economy, yielding a total 
of 4814 country-year observations. We choose 1851 as the starting date because it is the earliest year when uninterrupted 
data are available for at least 10 countries. The reason for this criterion is that the model incorporates the correlation in the 
timing of rare events across countries through a world event indicator, and it is undesirable if this indicator is estimated 

18 Time variation in the coefficient of relative risk aversion, γ , can similarly affect asset pricing.
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from data for only a few countries. The ten countries with uninterrupted data since 1851 are Denmark, France, Germany, 
Netherlands, Norway, Spain, Sweden, Switzerland, the United Kingdom, and the United States. The data set used in this 
study is much larger than those in previous studies. For example, the total number of country-year observations explored 
in NSBU is 2685, and that number is almost doubled here.

A.2. Missing data at the beginning of series

When t = 1851, i.e., for the first year in the data, the value of I w,t−1 is missing. In this case, we use the proportion of 
world event years in all the years in the simulation to simulate the value of I w,t−1 and then simulate the value of I wt based 
on the simulated I w,t−1 and other information.

Let ti0 denote the earliest date when uninterrupted consumption data are available for country i. When t = ti0, For-
mula (3) is not directly applicable, because Ii,ti0−1 is missing. Following the idea of (3), we calculate the following prior 
conditional probability instead

Pr(Iiti0 = 1 | I wti0)

= Pr(Iiti0 = 1 | Ii,ti0−1 = 0, I wti0)Pr(Ii,ti0−1 = 0 | I wti0)

+Pr(Iiti0 = 1 | Ii,ti0−1 = 1, I wti0)Pr(Ii,ti0−1 = 1 | I wti0) (A.1)

= q
I wti0
01 q

1−I wti0
00 Pr(Ii,ti0−1 = 0 | I wti0) + q

I wti0
11 q

1−I wti0
10 Pr(Ii,ti0−1 = 1 | I wti0).

For simplicity, we further assume

Pr(Ii,ti0−1 = 1 | I wti0) = Pr(Ii,ti0−1 = 1),

where the prior probability Pr(Ii,ti0−1 = 1) is estimated by qi , the fraction of event periods in all the periods studied for 
country i. So

Pr(Iiti0 = 1 | I wti0) = q
I wti0
01 q

1−I wti0
00 (1 − qi) + q

I wti0
11 q

1−I wti0
10 qi, (A.2)

and we impose the restriction that qi ∈ (0, 0.3].
For other cases of missing data, we also specify reasonable prior distributions to improve the estimation accuracy.

A.3. Prior distributions of parameters and unknown quantities

Bayesian MCMC has two major advantages in estimating the model here: (1) necessary information can be incorporated 
into prior beliefs, and (2) it is relatively easy to implement for a model as complicated as the one proposed in this study. 
The prior distributions of parameters and unknown quantities in the proposed model are listed in detail here.

In this study, a prior being “uninformative” means that the posterior distribution is proportional to the likelihood. With 
an uninformative prior, the mode of the posterior distribution corresponds to the maximum-likelihood estimate. A typical 
uninformative prior for a parameter is the uniform distribution on an infinite interval (e.g., a half-line or the entire real 
line). Extending that idea, we also say that the uniform distribution on a finite interval is uninformative if the finite interval 
contains the parameter with probability 1. More generally, we say a prior distribution is “almost uninformative” (or more 
rigorously, “not very informative”) if it is close to a flat prior. In this study, the general guideline for the specification of 
priors is to make them as uninformative as possible (in certain regions). Thus, many priors are taken to be uniform.

Prior distributions of parameters In this study, ηit is assumed to follow the normal distribution N(η, σ 2
η ), and φit is as-

sumed to follow the truncated normal distribution T N(φ�, σ �2
φ ; −∞, 0), where φ� and σ �2

φ denote the mean and variance, 
respectively, of the underlying normal distribution (i.e., the normal distribution before truncation). The mean value and 
standard deviation of φit are denoted by φ and σφ , respectively. Another possible choice for the prior distribution of ηit

and φit is the exponential distribution. Based on Barro and Jin (2011), if 1
1−b ∼ power law distribution with (upper-tail) 

exponent α, where the disaster size b is the fraction of contraction in C (real per capita personal consumer expenditure), 
then ξ � − ln(1 − b) ∼ exponential distribution with rate parameter α. This relationship suggests exponential distributions 
for φit and ηit .

The prior distribution of the long-term average growth rate μi of country i is assumed to follow N(0.02, 0.3 · 0.012), 
where the prior mean and variance are set to the mean values of the long-term average growth rates of per capita con-
sumption and Gross Domestic Product (GDP) of the 42 economies in the enlarged Barro-Ursúa data set. (More specifically, 
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Fig. A.1. σzm and σxm as Functions of m.

the corresponding mean value and standard deviation are 0.0189 and 3.16·10−5, respectively.) As a summary, the prior 
distributions of the parameters are listed in the following table.

Parameter Distribution Parameter Distribution

p0 ∼ U (0, 0.05) p1 ∼ U (0.3, 0.9)

q01 ∼ U (0.3, 1) q00 ∼ U (0, 0.03)

q11 ∼ U (0.3, 0.9) q10 ∼ U (0, 0.9)

η ∼ N(−0.025, 0.12) ση ∼ U (0.01, 0.25)

φ� ∼ U (−0.25, 0) σ �
φ ∼ U (0.01, 0.25)

σνi ∼ U (0.001, 0.015) ρz ∼ U (0, 0.9)

ρχ ∼ U (0, 0.98) ρσ ∼ U (0, 0.98)

k ∼ U (0.1, 10) σωi ∼ U (10−5, 10−3)

σ 2
i ∼ T N(σ 2

it ,0.00042;10−8,0.042) μi ∼ N(0.02, 0.3 · 0.012)

σεi ∼ U (0.001,0.15)

Conditional prior distribution of event gaps It is intuitive that event gaps will gradually diminish if no events occur in a 
country. Based on this notion, we specify the conditional prior distribution of zit as follows. When Iit = 1, i.e., country i is 
in a rare event at time t , the prior distribution of zit is assumed to be N(0, σ 2

z0). We take σz0 = 1, which is very large, so 
the prior is fairly uninformative on a region local to 0. If year t is the first uneventful year after a rare event in country i, 
equation (7) becomes

zit = ρz zi,t−1 + σνiνit,

which implies

Var(zit) ≤ (
ρz · S D(zi,t−1) + σνi

)2 ≤ (
0.9 · σz0 + sup(σνi)

)2
,

i.e.,

S D(zit) ≤ σz1 � 0.9 · σz0 + sup(σνi) = 0.915,

where “S D” stands for “standard deviation.” When year t is the mth uneventful year after the most recent rare event in 
country i, the upper bound σzm of S D(zit) can be calculated recursively, and we assume that the prior distribution of zit
follows N(0, σ 2

zm).19 Note that the above specification of prior distributions of event gap zit is intuitive and is conditional 
on when the last event before year t happens in country i.

Conditional prior distribution of potential consumption Based on the prior distribution of zit , we derive the conditional prior 
distribution of xit as follows. According to equation (1), the upper bound σxm of S D(xit) satisfies

σxm ≤ σzm + sup(σεi) = σzm + 0.15,

when year t is the mth (m ≥ 0) uneventful year after the most recent event in country i. We define

σxm � σzm + 0.15

and assume that the prior distribution of xit is N(cit , σ 2
xm). Fig. A.1 shows the standard deviation σzm (σxm) of the prior 

distribution of zit (xit ) as a function of m. As m goes to ∞, σzm (σxm) is decreasing and converges to 0.15 (0.3), which is 
large (based on economic common sense). Therefore, the prior distributions of zit and xit are fairly uninformative.

19 Here, m = 0 indicates that country i is in a rare event. In the simulation, if no event happens in year ti0 for country i, a simple simulation using 
probability qi is implemented to determine the number m. (See Appendix A.1 for the meaning of qi .)
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Non-negativity of σ 2
it The method for excluding negative values of σ 2

it is similar to that employed by Bansal and Yaron 
(2004). Instead of “replacing negative realizations with a very small number,” we assume that the prior distribution of σ 2

it
follows the uniform distribution

σ 2
it ∼ U

(
10−8,0.072).

Thus, the posterior distribution of σ 2
it follows a truncated normal distribution. This treatment is natural from the Bayesian 

point of view, and it is similar to that in Bansal and Yaron (2004), as both methods are using (variants of) truncated normal 
distributions to exclude possible negative realizations of σ 2

it .

A.4. Estimation procedure

The model is estimated by the Bayesian MCMC method, which has been applied to many problems in economics and 
finance, e.g., Chib et al. (2002); Pesaran et al. (2006); and Koop and Potter (2007). Specifically, we use the algorithm of the 
Gibbs sampler for the random draws of parameters and unobserved quantities (see Gelman et al. (2004) for a discussion of 
the MCMC algorithms).

The convergence of the MCMC simulation is guaranteed under very general conditions. In order to accurately estimate 
parameters and unknown quantities, we run four simulation chains, similar to the procedure in NSBU (see Appendix A.5 for 
details of the specification of the four simulation chains). Besides simulating multiple sequences with over-dispersed starting 
points throughout the parameter space and visually evaluating the trace plots of parameters and unknown quantities from 
the simulation, we also assess the convergence by comparing variation “between” and “within” simulated sequences (see 
Chapter 11 of Gelman et al. (2004) for a discussion of this method).

After a half million iterations, the simulation results from the four sets of far-apart initial values stabilize and become 
very close to each other. So we iterate each chain 2 million times and use the later 1 million iterations to analyze the 
posterior distributions of parameters and unknown quantities of interest. The first million iterations are dropped as burn-in.

A.5. Specification of four simulation chains

In order to accurately estimate the model and assess convergence, we run four independent simulation chains in a way 
similar to that of NSBU. We specify two extreme scenarios: one is called the “no-event scenario,” the other the “all-event 
scenario.” For the no-event scenario, we set I wt = 0, Iit = 0, xit = cit , and zit = 0 for all i and t . For the all-event scenario, 
we set I wt = 1 and Iit = 1 for all i and t and extract a smooth trend using the Hodrick-Prescott filter (see Hodrick and 
Prescott (1997)). Let cτ

it denote the trend component and cc
it the remainder, i.e.,

cc
it = cit − cτ

it .

We then let

zit = min
(
max

(−0.5, cc
it

)
,0

)
and xit = cit − zit .

For each scenario, we specify two sets of initial values for parameters: one is called the “lower values,” the other the 
“upper values.” For the set of “lower values,” the initial parameter values are either close to their lower bounds or very low 
compared to their mean values. For the “upper values,” we have the opposite situation. Thus, the four sets of initial values 
of parameters for the four simulation chains are far apart from each other.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .red .2020 .08 .002.
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