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1 Introduction

The “big data” revolution has fundamentally reshaped how institutional investors acquire

and process information in the capital market (Goldstein et al., 2021). In addition to re-

lying on standardized data from corporate disclosures (e.g., annual reports and corporate

announcements) and information intermediaries (e.g., Bloomberg, Reuters, and financial an-

alysts), financial institutions attempt to beat the market by recruiting data scientists who

collect, maintain, and analyze unstructured alternative data with artificial intelligence tech-

niques.1 Our analysis based on personal profiles from the Revelio Lab database suggests

that the total number of data scientists employed by financial institutions has more than

quadrupled (i.e., 11,799 to 57,050) from 2008 to 2021. With the fast-growing demand for

skilled data scientists outpacing the growth of talent supply, financial institutions are com-

peting not only among themselves but also against technology companies to attract the best

workers in data science.2

Our paper explores three sets of research questions related to the increasingly important

role of data scientists in the capital market. First, why do financial institutions aggressively

recruit data scientists? Do data scientists help financial institutions identify abnormal re-

turns, i.e., alphas, in portfolio management? Second, if data scientists do generate significant

benefits, do financial institutions strategically adjust portfolio allocation decisions in the fi-

nancial market and recruitment decisions in the labor market to maximize these benefits?

1For example, in May 2017, JP Morgan released a report on “Big Data and AI Strategies", which includes
594 alternative data sources that institutional investors can extract useful information for trading.

2The Data & AI Human Capital Report, issued by Darwin X, shows that the total data talent pool
constitutes only 1.4% of the total workforce of major banks. The data and AI workforce is expected to grow
by 17% in 2024 and 38% in 2025. While all financial institutions are competing for data scientists, the report
suggests that the gap between leaders and laggards is widening.
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Last but not least, we are interested in the aggregated impacts of data scientist recruitment

on the capital market. In particular, we examine whether the total number and the distri-

butional concentration of data scientists covering a stock affect its price informativeness.

To answer our research questions empirically, we link institutional investors’ employment

of data scientists to their stock holdings. We collect detailed resumes of employees hired by

institutional investors from the Revelio Lab database, which gathers career history data from

various unstructured public online sources, including LinkedIn. The initiation of our sample

in 2008 coincides with the proliferation of online career websites during the early 2000s, with

the career data provided by the Revelio Lab achieving representativeness towards the latter

part of the same decade. After merging the Revelio data with institutional holding data from

the Refinitiv/Thomson Reuters Global Ownership database, we start with a merged dataset

containing records of 3,265,145 unique workers affiliated with 7,588 distinct institutional

investors from 2008 to 2021. We then identify data scientists within this group based on the

ONET occupation codes.3 This approach allows us to identify 326,627 unique data scientists

employed by 3,126 institutional investors in our sample period. Based on the main tasks

and required skills from job descriptions, we classify data scientists into three groups – data

collectors, maintainers, and analyzers.

Our analysis shows that institutional investors who hire more data scientists achieve

higher trading profitability, which is consistent with the notion that data scientists help

institutions identify mispriced assets. We find that, on average, each additional data scientist

hired by an investor leads to a 0.004 percentage point increase per quarter in CAPM alpha,

3The specific ONET codes corresponding to data scientist roles are listed in Appendix Table A2.
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translating to a 13% improvement over the average trading profitability in our sample. The

results are robust across different measures of trading profitability and various roles of data

scientists (i.e., data collectors, maintainers, and analyzers). Among these, data analyzers

stand out as the most impactful category, underscoring the critical role of data analysis in

generating investment insights. The above correlation between the number of data scientists

and institutional performance might be driven by omitted variables that affect both. To

address this endogeneity concern, we leverage an instrumental variable approach using the

introduction of data science undergraduate programs as an exogenous shock to the future

(i.e., four-year future) local supply of data scientists. We show that the increase in the

recruitment of data scientists, as an outcome of exogenous increases in local labor supply,

leads to significant improvements in trading profitability, validating the causal link between

data scientist recruitment and institutional investors’ ability to “seek alpha".

We further explore the conditions under which investors gain the most from hiring data

scientists and we focus on a unique dimension of data scientist concentration, defined as the

Herfindahl-Hirschman Index (HHI) of data scientists across all institutions holding a stock.

For example, think about a stock held by ten institutional investors. In the first case, one

institutional investor has ten data scientists and the other nine have none (HHI=1). In the

second situation, each institutional investor has one data scientist (HHI=0.1).4 While the

total number of data scientists covering this stock is the same under these two situations,

the first case obviously has a much higher data scientist concentration relative to the second

case. When data scientist concentration is higher, the informational advantage of institutions

4This is from
∑10

i=1(1/10)
2 = 0.1.
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that employ more data scientists could be more pronounced. Conversely, if each investor

holding a stock employs a similar number of data scientists, the competition to uncover and

act on useful information becomes more intense, diminishing this informational advantage

(e.g., Holden and Subrahmanyam, 1992; Xiong et al., 2024). Our analysis reveals that the

positive impact of hiring data scientists on trading profitability is indeed amplified when

data scientist concentration is higher.

Our findings indicate that institutional investors strategically adjust their portfolio allo-

cation and recruitment decisions to maximize the benefits provided by data scientists. First,

we show that investors who hire more data scientists tend to concentrate their holdings on a

smaller set of stocks. This strategic focus allows their data scientists to generate information

advantage, thereby improving trading performances in a competitive environment. More-

over, we find that investors strategically tilt their asset allocation toward stocks with higher

data scientist concentration, where their data scientist employment allows them to enjoy an

information monopoly advantage, and subsequently boost their trading profitability.

Beyond portfolio decisions, we find that investors actively respond to competitive pres-

sures in the labor market. Investors appear to keep up with their rivals’ hiring activities and

seek to close gaps in data scientist staffing. When investors find themselves lagging behind

leading competitors in hiring data scientists, they respond by increasing their recruitment

efforts. This behavior reflects a talent race within the finance industry, where investors

strive to maintain a competitive edge by continually expanding their data science capabil-

ities. These strategic moves in both the financial market and the labor market underscore

the importance that investors place on the unique value offered by data scientists.
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Our findings so far reveal that while investors gain an information advantage from employ-

ing data scientists, this advantage can come at the expense of market efficiency. Specifically,

we demonstrate that the concentration of data scientists among a few investors diminishes

price informativeness. A one standard deviation increase in data scientist concentration leads

to an 11% decrease in price informativeness, highlighting the efficiency cost of concentrated

data scientist coverage. When data scientists are concentrated among a few institutional

investors, the “information monopoly" of investors with more data scientists gives them a

stronger incentive to delay the incorporation of their private information into stock prices,

resulting in less efficient price formation.

To strengthen our causal inference, we take advantage of mergers and acquisitions (M&As)

among institutional investors as a source of exogenous variation in data scientist concen-

tration. We argue that M&A decisions are generally not motivated by the specific data

scientist resources of the acquirer and target institutions. Furthermore, a merger between

two investors holding different stocks can lead to divergent changes in data scientist concen-

tration, depending on the pre-merger conditions of each stock. This heterogeneity provides

a quasi-experimental setting to examine the impact of data scientist concentration on price

informativeness. Our analysis shows that exogenous decreases in data scientist concentration

following financial institution mergers lead to improved price informativeness, further sup-

porting our hypothesis that concentrated data scientist coverage negatively affects market

efficiency.

Our paper is closely related to existing studies on the role of big data in the financial

market. Farboodi et al. (2022) develop a quantitative measure of data usage by investors.
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Farboodi et al. (2019) and Veldkamp (2023) provide a theoretical framework and a set

of tools to value data as an asset. Other studies in this field have investigated a large

number of implications that big data has generated in the capital market, including price

informativeness (Dugast and Foucault, 2018), market efficiency (Martin and Nagel, 2022),

capital allocation (Dugast and Foucault, 2024), forecast accuracy (Chi et al., 2024), forecast

horizon (Dessaint et al., 2024), endogenous data skill acquisition (Huang et al., 2022), and

disciplinary effect of corporate managers (Zhu, 2019). Unlike data that can be shared with

a positive externality, we focus on data scientists who cannot be employed by multiple

institutional investors at the same time. While institutional investors compete for data

talent, we find the distributional concentration of data scientists across institutional investors

affects price informativeness.

Our paper also contributes to the growing literature on the labor market of financial

workers. Most studies in this field focus on the finance wage premium, i.e., compensation in

the finance industry has been much higher than that in other sectors since the 1990s (e.g.,

Philippon and Reshef, 2012; Boustanifar et al., 2017; Célérier and Vallée, 2019). Due to data

limitations, only a very small number of studies have investigated the determinants of career

choices and progressions in buy-side financial institutions. For example, Oyer (2008) finds

that stock market conditions have a large effect on whether MBA graduates go directly to

Wall Street after graduation. Ellul et al. (2019) show that managers working for liquidated

funds due to poor performance suffer demotion or compensation loss after job turnovers.

We identify a prevailing trend of recruiting data scientists among institutional investors and

show that data scientists causally help financial institutions generate abnormal returns.
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The rest of this paper is organized as follows. Section 2 describes the data and vari-

able construction. Section 3 presents empirical results addressing three research questions.

Section 4 concludes.

2 Data Sources and Summary Statistics

2.1 Data Scientist Measures

We obtained detailed resumes of employees hired by institutional investors from the

Revelio Lab database, which collects data from various unstructured public career web-

sites, including LinkedIn. This dataset provides detailed information related to employment

histories, including job titles, skill requirements, employer (company) names, employment

duration, and descriptions of job responsibilities. The platform began in the early 2000s, and

for consistency with prior research (e.g., Liang et al., 2023; Cai et al., 2024), our sample cov-

ers the period from 2008 to 2021. During this period, Revelio has documented 646,940,525

unique employment experiences from 220,358,527 individuals worldwide, associated with

17,163,699 different public and private companies.

We pair employers in the Revelio data with institutional investors from the Thomson

Reuters Global Ownership database using a name-matching algorithm. We then manually

verified these matches to ensure their accuracy. The combined Revelio-Global Ownership

dataset includes records of 2,908,292 unique workers connected to 7,408 distinct institutional

investors, covering a sample period from 2008 to 2021.

Data scientists are identified based on the occupation codes (ONET codes) associated

with their positions. By reviewing the tasks described in the ONET occupation database, we
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partition data scientists into three groups according to their roles and functions: data col-

lection, data analytics, and data maintenance. Each role has clearly defined responsibilities:

“data collection" refers to the tasks of gathering and organizing data, “data analytics" refers

to the tasks of analyzing data for making business decisions, and “data maintenance" refers

to the tasks of storing and protecting data by maintaining proper hardware. The specific

ONET codes for these data scientist roles are listed in Appendix Table A2. Our final dataset

includes 124,947 unique data scientists employed by 1,957 different investors.

Our dataset on data scientists is constructed based on online personal profiles, instead of

corporate reports released by firms. This approach mitigates the concerns about corporate-

disclosure-based data that companies may have strategic incentives to disclose (or not to

disclose) the recruitment of data scientists. Previous studies using the same dataset (Li

et al., 2022) find that online profiles are more likely to represent white-collar workers than

blue-collar workers and workers with online profiles have a higher level of computer literacy

than those without online profiles. This limitation is minor for our study since data scientists

are typically white-collar workers with a high level of computer literacy. They are well

represented in online profiles.

While it is straightforward to count the number of data scientists employed by a financial

institution, computing the number of data scientists covering a stock is nontrivial. Obviously,

for a single stock, a data scientist of a major shareholder is not equivalent to a data scientist

of a minor shareholder. Following this intuition, we compute the ownership-weighted average

number of data scientists covering a specific stock as follows:

DS Coveragej,t =
∑
i

NumDSi,t ×
Shares Heldi,j,t

Shares Outstandingj,t
, (1)
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where j denotes a stock, i denotes an investor, and t denotes a time period. NumDSi,t is

the number of data scientists employed by investor i at time t. Shares Heldi,j,t represents the

number of shares of stock j held by investor i at time t. Shares Outstandingj,t is the total

number of shares outstanding of stock j at time t. The ratio of the two (i.e., Shares Heldi,j,t

scaled by Shares Outstandingj,t) is the percentage of all outstanding shares of stock j

held by investor i at time t. By constructing this measure, we implicitly assume that data

scientists of major shareholders exert a higher influence on stock prices relative to those of

minor shareholders or those of financial institutions that have no position in this stock.

Another key variable of interest, DS HHI, measures the concentration of data scientists

for a specific stock. Our intuition is captured by the following example. Consider two stocks,

Stocks 1 and 2, and four institutional investors, Investors a, b, c, and d. Investors a and

b each hold 50% of Stock 1, while Investors c and d each hold 50% of Stock 2. Investors

a, b, c, and d employ 10, 0, 5, and 5 data scientists, respectively. Under this assumption,

both the total number of data scientists (10) and the ownership-weighted number of data

scientists (5) are the same for Stocks 1 and 2. However, the concentration of data scientists

differs significantly across the two stocks. Specifically, the data scientists covering Stock

1 are concentrated with Investor a, whereas those covering Stock 2 are evenly distributed

between Investors c and d.

Following this intuition, we compute the concentration of data scientists for a specific

stock in a similar spirit as a Herfindahl index, as outlined in the following equation:

DS HHIj,t =
∑
i

(
NumDSi,t × Shares Heldi,j,t

Shares Outstandingj,t

DS Coveragej,t
)2, (2)

where j denotes a stock, i denotes an institutional investor, and t denotes a time period.
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By construction, DS HHI is a stock-level variable that is strictly greater than 0 and less

than or equal to 1 (i.e, DS HHIj,t ∈ (0, 1]), where a value of 1 indicates the highest level

of concentration (only one institutional investor hires data scientists) and a value close to

zero indicates a more diversified hiring of data scientists across multiple investors. From

an individual firm’s perspective, data scientist concentration depends on the employment

of data scientists of other financial institutions holding the same stock. More importantly,

when one financial institution recruits more data scientists, it is likely that some stocks in its

holding experience an increase in data scientist concentration and others experience opposite

changes.

2.1.1 Other Data Sources

The quarterly 13F institutional investors’ holdings data are retrieved from Refinitiv/Thomson

Reuters Global Ownership Database. The dataset reports holdings of any institutions with

assets under management of $100 million or more, covering a wide range of financial institu-

tions, including mutual funds, hedge funds, bank trusts, pension funds, insurance companies,

and sovereign wealth funds.

In addition, stock price information is retrieved from CRSP, and corporate performance

data are obtained from Compustat. In our identification strategy relying on the mergers and

acquisitions of financial institutions, the M&A information is retrieved from the SDC M&A

database.
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2.2 Summary Statistics

In Appendix Table A3, we present the top 50 institutional investors ranked by their data

scientist employment in 2021. The top three institutional investors are Morgan Stanley,

Credit Suisse, and Goldman Sachs. The list also includes many prominent hedge funds, such

as BlackRock Alternatives Management and AQR Capital Management.

[Insert Figures 1 and 2 Here]

In Figure 1, we plot the time series for the total number of data scientists hired by all

institutional investors with an annual frequency. The figure shows a clear pattern that the

financial institutions’ employment of data scientists significantly increases during our sample

period. Specifically, there are, in total, 11,799 data scientists employed by institutional

investors in 2008. This number reaches 57,050 in 2021, which is more than quadrupled

relative to the 2008 level.5 We also observe that the speed of employing data scientists does

not slow down after 2020.

Figure 2 provides the time-series patterns for the mean of data scientist concentration

across all stocks. We observe that the data scientist concentration dropped after the sub-

prime crisis and, since then, the data scientist concentration has been gradually increasing.

There are two possible (and mutually non-exclusive) reasons driving this pattern. One pos-

sible reason is that some major financial institutions recruit more data scientists than other

5It is possible that this trend is partially contributed by the fact that the online profile for 2021 is more
complete than that for 2008. To address this concern, we also verify this pattern by using the Lightcast
online job post data and we find the same pattern.
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financial institutions. Another possibility is that financial institutions make strategic ad-

justments to their holdings so that they are more likely to invest in stocks where they have

advantages in information processing ability (e.g., having relatively more data scientists than

other investors). We will test both conjectures in the following sections.

[Insert Table 1 Here]

Table 1 provides summary statistics of all key variables. Panel A reports institutional

investor-level statistics, while firm-level statistics are reported in Panel B. On average, in-

stitutional investors in our sample hire two data scientists, though the distribution is highly

skewed, with over 75% of investors not employing any data scientists during the sample

period. Among the three categories of data scientists, those focused on data analytics are

the most numerous. The average investor has a natural logarithm of total assets under

management of 19.978.

The holding-weighted average number of data scientists covering firms in our sample is

17. Consistent with the investor-level summary statistics, data scientists focused on analytics

make up the largest proportion of data scientist coverage for firms. The average concentration

of data scientists is 0.409 in our sample.

[Insert Table 2 Here]

We first run panel regressions to identify the type of financial institutions that are more

likely to recruit data scientists. The dataset for these tests is organized at the institution-

year level. The dependent variable in Panel A is the total number of data scientists employed
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by a specific institutional investor in year t. We include common institutional characteristics

as independent variables, including asset size, asset turnovers, the number of industries

covered in portfolios, institution types, and the number of data-science-related undergraduate

programs of local universities. In column (2), we control for time fixed effects to eliminate

the impact of market-wide shocks. In column (3), we control for institution type×time fixed

effects to eliminate the market-wide shocks specific to each type of financial institution.

Results in Panel A of Table 2 suggest that financial institutions that have high turnovers in

investment, cover more industries in portfolios, and have larger assets under management are

likely to recruit more data scientists.6 Relative to financial institutions classified as financial

advisors, hedge funds employ more data scientists while pension funds and banks employ

fewer. The most interesting result in Panel A of Table 2 is that the number of data scientists

recruited by financial institutions is positively correlated with the number of data-science-

related undergraduate programs offered by local universities, suggesting that the supply of

data scientists in the local labor market is likely to affect financial institutions’ employment

of data scientists in equilibrium. Our identification strategy that relies on the establishment

of new data science undergraduate programs in local universities in Section 3.1 is motivated

by this important correlation in Panel A of Table 2.

In addition, we also examine which types of stocks are more likely to be covered by data

scientists at the stock-year level. Panel B of Table 2 presents the cross-sectional correlation

between the number of data scientists covering each firm and firm characteristics. The

dataset for these tests is organized at the firm-year level. Our results suggest that the

6Since LogTNA and Num NonDS Employee are highly correlated, we show in unreported re-
sults that investors with higher assets under management are more likely to hire data scientists when
Num NonDS Employee is excluded from the regression.
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ownership-weighted number of data scientists employed by financial institutions investing in

a stock is positively correlated with firm size, institutional ownership, leverage, cash holding,

and the existence of reported financial fraud, but is negatively correlated with institutional

ownership concentration, Tobin’s Q, and firm age.

3 Empirical Results

3.1 Seeking Alpha: Why Do Financial Institutions Recruit Data Sciencits?

Given the fact that financial institutions are competing for data scientists in the labor

market, it is important to understand the benefits or strategic advantages brought by data

scientists. For most institutional investors, particularly actively managed funds, the primary

goal is to achieve the highest trade-off between return and risk, i.e., maximizing the Sharpe

ratio. Data scientists play a crucial role in "connecting the dots" of all public and private

information available to financial institutions, generating accurate predictions with superior

information processing, and helping firms seek alpha on mispriced assets. In this section,

we examine whether the employment of data scientists is positively correlated with trading

profitability, i.e., alphas, of their affiliated financial institutions. More importantly, we aim

to understand whether this positive correlation is also affected by the distribution of data

scientists across all major institutions investing in one specific asset.

To this end, we estimate the following regression for 13F investor i at quarter t:

Alphai,t+1 = β0 + β1NumDSi,t + Investor Controls+ Fixed Effects, (3)

where Alphai,t+1 denotes trading profitability that we construct to examine whether an insti-

tution with data scientists has the ability to change its holdings in the direction of subsequent
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abnormal returns (alphas), following Kumar et al. (2020) and Bonelli and Foucault (2023).7

Specifically, trading profitability is the sum of the portfolio-weight change from t − 1 to t

times alphas of each stock earned from t to t+1. In this way, we can estimate the contribu-

tion of data scientists to the institution’s quarterly alphas through active trading. Alphas

are computed based on the CAPM, Fama-French 3-factor, and Fama-French 4-factor models.

CAPM αt+1, for instance, is calculated as:

CAPM αi,t+1 =
∑
j

(Weighti,j,t −Weighti,j,t−1)× CAPM αj,t+1, (4)

where Weighti,j,t represents the portfolio weight the investor i holds in stock j in quater t

and CAPM αj,t+1 is the CAMP alpha of the stock j. The CAMP alpha of the stock j is

estimated at a monthly frequency, and we accumulate monthly alphas to compute quarterly

alphas, which are then multiplied by 100 to be presented in percentage. A higher CAPM

alpha for an investor indicates that they either had increased their holdings in stocks that

subsequently generated positive alpha or had reduced their holdings in stocks that ended up

earning negative alpha. Thus, the CAPM alpha captures the investor’s trading profitability.

The key independent variable is NumDSi,t, which is the number of data scientists em-

ployed by investor i at time t. Investor-level control variables include the log of total assets

under management of the investor (LogTNA), the log of the number of stocks in the in-

vestor’s portfolio (Log Number of F irm), the investor’s portfolio turnover (Turnover), a

dummy variable that equals to one if the investor’s portfolio covers two or fewer industries

(FewIndDummy), the ownership-weighted average of the log of the market capitalization

7Kacperczyk et al. (2014) and Jiang and Zheng (2018) construct similar measures based on the deviation
of the fund’s holdings relative to a benchmark portfolio to measure the stock picking ability.
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of stocks in the portfolio (Log Market Cap), the ownership-weighted average of the trading

volumes of stocks in the portfolio (V olume), and the ownership-weighted average of the gross

profit margin of stocks in the portfolio (Gross Profit).

We include investor fixed effects to account for time-invariant unobservable character-

istics specific to each investor that could influence trading profitability as well as average

performance. Additionally, year fixed effects are included to control for common time trends

affecting all investors in a given period. In Equation (3), our coefficient of interest is β1 that

measures the effect of hiring data scientists on investor trading profitability. A positive and

significant β1 would indicate that institutional investors with more data scientists achieve

higher trading profitability.

[Insert Table 3 Here]

Panel A of Table 3 presents the estimates from Equation (3). The coefficients on NumDS

(β1) are positive and significant across all columns, indicating that investors who hire more

data scientists exhibit higher trading profitability. The findings are robust across different

alpha measures and economically significant. For example, in column (1), each additional

data scientist hired by the investor is associated with a 0.004 percentage point increase in

trading profitability as measured by CAPM alpha, which represents a 13% improvement over

the average trading profitability of investors in our sample.

In Panel B, we divide data scientists into three groups based on their roles and functions:

data analytics, data collection, and data maintenance. We then analyze the relationship

between investor trading profitability and the hiring of each of these three types of data
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scientists. The coefficients of interest in columns (1)-(3) are all positive and significant,

indicating that hiring any of these three types of data scientists is positively correlated with

investor performance. In column (4), we include all three types of data scientists in the

regression. The result suggests that data scientists focused on data analytics exhibit the

strongest and most robust positive relationship with investor trading profitability, aligning

with the intuition that data analysis provides the most direct and valuable insights for

investment decisions.

The relationships observed between the hiring of data scientists and trading profitability

thus far reflect correlations, but these correlations do not guarantee causality. Specifically,

the positive correlation does not ensure that increasing the number of data scientists will lead

to improved trading profitability for investors. Reverse causality is a possibility: investors

who are already performing well may have greater financial capacity to hire additional em-

ployees, including data scientists. Moreover, unobserved common variables could influence

both trading profitability and the decision to hire data scientists simultaneously.

We address endogeneity concerns by exploiting an identification strategy based on an

exogenous shock to the local availability of data scientists. This allows us to examine the

causal impact of this increased availability on the trading profitability of investors located

in the same states. In Panel A of Table 2, we show that the number of data scientists hired

by institutional investors is positively correlated with the number of data-science-related

undergraduate programs offered by local universities, suggesting that the supply of data

scientists in the local labor market is likely to affect institutional investors’ employment of

data scientists in equilibrium. Our identification strategy hinges on the establishment of new
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data science undergraduate programs, which are largely independent of local institutional

investors’ actions. While one might argue that local labor market demand could influence

the establishment of these programs, the four-year lag between the introduction of new

programs and the availability of graduates makes it difficult for institutional investors to

time or control the supply, supporting the exogeneity of this shock in our context.

We count the cumulative number of local data scientist undergraduate programs estab-

lished four years prior (t−4) in the same state as the investor (NumProgram). We employ a

two-stage least squares (2SLS) approach, using NumProgram as the instrumental variable

for the number of data scientists hired by the investor. This allows us to assess whether

trading profitability of the investors increase with the positive shocks in data scientist hiring

resulting from the higher supply of data scientist local talent pool. The findings of this

analysis are presented in Table 4.

[Insert Table 4 Here]

Column (1) of Table 4 presents the result for the first-stage regression. The F-statistic

exceeds 557, which suggests that we do not have a weak instrument problem. As expected,

the instrumental variable NumProgram is positively correlated with the number of data

scientists hired by institutional investors located in the same states as the universities that

established data science programs four or more years ago. The second-stage regression

results are shown in column (2). The positive and significant coefficient for the instrumented

number of data scientists indicates that trading profitability increases with the number of

data scientists that are explained by an exogenous local data scientist supply. Columns
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(3) to (8) confirm that this relationship holds consistently across all three types of data

scientists. This evidence suggests that investors with more data scientists achieve higher

trading profitability, indicating that data scientists help in gathering and analyzing valuable

information for trading decisions, and this relationship is likely causal.

The next question is when investors gain the most advantage from the data scientists

they hire. If all other investors holding the same stock also employ data scientists, the com-

petition to extract useful information intensifies, reducing the advantage. In contrast, when

fewer investors have data scientists, and the data scientist coverage is more concentrated, the

investor with the most data scientists gains a more significant edge by accessing unique in-

sights. Therefore, we would expect the advantage of having data scientists to be greater when

data scientist coverage is concentrated, as opposed to being diluted across many investors.

We use an investor-firm-quarter level sample to examine the relationship between trad-

ing profitability and the concentration of data scientists covering the firm. The following

regression is estimated:

Alphai,j,t+1 = β0 + β1PortfolioWeighted NumDSi,j,t ×DS HHIj,t + β2DS HHIj,t

+ β3PortfolioWeighted NumDSi,t + Investor Controls+ Firm Controls

+ Fixed Effects,

(5)

where i denotes the 13F investor, j denotes the stock, and t denotes the quarter. Similar to

Equation (3), the dependent variables represent the portfolio-weight change × alphas of the

stock based on the CAPM, Fama-French 3-factor, and Fama-French 4-factor models. For

example, CAPM αi,j,t+1 is calculated as:
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CAPM αi,j,t+1 = (Weighti,j,t −Weighti,j,t−1)× CAPM αj,t+1, (6)

where Weighti,j,t represents the portfolio weight the investor i holds in stock j in quater t

and CAPMαj,t+1 is the CAMP alpha of the stock j. The CAMP alpha of the stock j is

estimated at a monthly frequency, and we accumulate monthly alphas to compute quarterly

alphas, which are then multiplied by 10,000 to be presented as basis points.

It is impractical to assume that investors allocate their data scientists’ efforts equally

across all the stocks in their portfolios. Stocks with higher portfolio weights naturally hold

more importance, leading investors to allocate more resources toward gathering information

on these stocks. To capture this, we construct an investor-stock-level data scientist measure,

PortfolioWeighted NumDSi,j,t, constructed by multiplying the portfolio weight of stock j

by the number of data scientists hired by the investor (Weighti,j,t ×NumDSi,t). DS HHI

represents the concentration of data scientists covering a firm, constructed in a similar man-

ner to the Herfindahl index, as detailed in Section 2.1. Investor-level control variables are the

same as those in Table 3. Firm-level control variables include the log of asset (LogAsset),

Tobin’s Q (TobinQ), ROA (ROA), and the log of firm age (LogAge).

In Equation (5), β3 represents the effect of hiring data scientists on investor trading

profitability when data scientist concentration is near zero, reflecting a situation where the

distribution of data scientists covering the stock is highly dispersed. β2 captures the effect of

data scientist concentration on trading profitability for investors without any data scientists.

The key coefficient, β1, measures the impact of hiring data scientists on trading profitability,

conditional on the level of data scientist concentration. A positive and significant β1 suggests

that the benefit of hiring data scientists on trading profitability is stronger when data scientist
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concentration is higher.

[Insert Table 5 Here]

Table 5 presents the estimates for Equation (5). The coefficient on DS HHI is negative

and significant across all columns. This indicates that a higher concentration of data scien-

tists is associated with lower trading profitability for investors without any data scientists.

This aligns with the intuition that when only a few investors hold a “monopoly" on superior

information through their data scientists, other investors are at an informational disadvan-

tage, leading to poorer performance in trading. The key coefficients on the interaction term

between PortfolioWeighted NumDS and DS HHI are positive and significant in most

columns, suggesting that the positive impact of hiring data scientists on trading profitability

is stronger when the concentration of data scientists is higher.

3.2 Strategic Investment and Hiring Decisions: How Do Financial Institutions
Maintain Advantages Brought by Data Scientists?

Next, we explore how investors respond to the value that data scientists provide. First,

we examine whether investors strategically tailor their portfolios to maximize the advantages

provided by their data scientists.

Data scientists play a crucial role in uncovering valuable firm-specific information that

helps investors make better trading decisions. If much of the data is unique to each firm—such

as proprietary datasets, disclosures, and alternative data—it makes sense for investors with

data scientists to concentrate their holdings on a smaller set of stocks. By doing so, data sci-

entists can focus their efforts on a more limited number of companies, enabling a deeper anal-
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ysis of each firm’s individual dynamics and competitive positioning. This targeted approach

allows investors to better leverage the unique data their data scientists analyze, leading to

more informed investment decisions and maximizing the value that data scientists bring to

the firm. In contrast, when data scientists generate firm-specific information, spreading data

scientists’ efforts across different firms too broadly would dilute their effectiveness, making

it harder to extract firm-specific insights that drive trading profitability.

[Insert Table 6 Here]

To test whether hiring of data scientists by institutional investors lead to a more concen-

trated portfolio, we analyze the relationship between the portfolio holding Herfindahl index

and the number of data scientists hired by the investor in column (1) of Table 6. The depen-

dent variable in column (1) is Holding HHI, which measures the concentration of portfolio

weights across the investor’s holdings. The positive and significant coefficient on NumDS

suggests that investors who hire more data scientists tend to hold more concentrated portfo-

lios. This indicates that investors allocate more of their portfolio to a smaller set of stocks,

likely allowing data scientists to focus on extracting deeper insights from a targeted group

of firms.

As shown in Table 5, the benefit of hiring data scientists on trading a given stock is

amplified when the stock has a high data scientist concentration. Given this, it follows

that investors with data scientists might choose to hold portfolios with stocks where data

scientist concentration is higher. In column (2) of Table 6, we test this hypothesis by exam-

ining whether investors with data scientists tend to hold portfolios with stocks that exhibit
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higher data scientist concentration. The dependent variable is Portfolio DS HHI, which

represents the portfolio-level average data scientists concentration that is computed as the

holding value-weighted average of the stock-level data scientists concentration (DS HHI).

The coefficient on NumDS is positive and significant in column (2), indicating that in-

vestors do indeed leverage their data scientists by strategically holding portfolios of stocks

with higher data scientist concentration.8 This allows them to benefit from the information

“monopoly" effect highlighted in Table 5, where concentrated data scientist coverage among

fewer investors enhances trading profitability for investors with data scientists.

In addition to portfolio strategies, investors also make strategic moves in the labor market.

Since data scientists play a crucial role in making better investment decisions and enhancing

trading profitability, it is natural to expect that investors have strong incentives to sustain

this advantage by continually seeking out data science talent. These incentives grow even

stronger when rivals are seen to lead in data scientist hiring. This prompts other investors

to keep up in the talent race, particularly if they feel they are falling behind in securing

this critical advantage. Anecdotal evidence supports this view, showing that competition for

data science talent is intense in the finance industry.9

To test whether investors seek to gain an advantage and keep pace in the talent race,

we examine whether investors hire more data scientists when there is a larger gap between

the number of data scientists they employ and the number employed by their leading peer

investor, especially for stocks they hold that have a higher concentration of DS (since the

8This result is not mechanical. When institutions hire more data scientists, the average concentration of
data scientists in their portfolios may go down. This depends on how institutions rebalance their portfolios
and how data scientists are distributed across other institutions holding the same stocks.

9See, https://darwinx-index.ams3.cdn.digitaloceanspaces.com/public-index/data_preview/
BANKING/Report/DX_Data&AI_HumanCapitalReport_BankingEdition_v1.pdf
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economic benefit of hiring data scientists to cover such stocks is higher, as demonstrated in

Table 5).

∆NumDSi,t+2 =β0 + β1NumDS Diffi,t + Investor Controls+ Fixed Effects, (7)

where i denotes the investor and t denotes the year. ∆NumDSi,t+2 is the change in the

number of data scientists employed by investor i from t + 1 to t + 2. The key independent

variable, NumDS Diffi,t, the gap between the number of data scientists employed by the

leading competitor (the one with the most data scientists among institutions holding the

same stock) and the number employed by investor i:

DS Diffi,t =
∑
j

[(NumDSj,t −NumDSi,t)×DS HHIj,t ×Weighti,j,t] (8)

where NumDSj,t is the number of data scientists employed by the institution with the most

data scientists holding stock j (the leading competitor). NumDSi,t is the number of data

scientists employed by the investor i. Weighti,j,t is a portfolio weight of stock j in investor

i’s portfolio.10 The investor-level control variables are the same as those used in Table 3.

Additionally, we include both investor and year fixed effects to account for time-invariant

investor heterogeneity and the general time trend.

The coefficient β1 in Equation (7) is expected to be positive and significant. When there

is a larger gap between the investor i and its competitors, the investor tends to keep up with

the race and hire more data scientists in the future.

10For the dependent variable in Equation (7), we examine the change in the number of data scientists
from t + 1 to t + 2 (i.e., ∆NumDSi,t+2) instead of the change from t to t + 1 (i.e., ∆NumDSi,t+1 =
NumDSi,t+1 −NumDSi,t). This is because if we examine the change from t to t + 1, the number of data
scientists in t (NumDSi,t) can drive the dependent variable and our key independent variable in Equation
(8) in the same direction, resulting in a mechanical relationship between the outcome variable and the
independent variable.
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[Insert Table 7 Here]

Results in columns (1) and (2) of Table 7 align with our hypothesis. The positive and

significant coefficients on NumDS Diff , both with and without control variables, indicate

that investors with a larger gap in the number of data scientists relative to their competitors

are more likely to recruit additional data scientists in the future to stay competitive in the

talent race.

The effect is expected to be stronger when investors are more aware of their lag in data

scientists relative to their competitors. If they hire data scientists who previously worked for

their competitors, they are likely to gain better insights into their competitive disadvantage

in terms of data scientist talent, leading to a stronger incentive to catch up in the talent

race. In Column (3), we add the variable Overlap NumDS Diff , which captures the gap

in the number of data scientists between the investor and its leading competitors, weighted

by the number of data scientists hired by investor i in year t who previously worked for the

leading competitor investor prior to year t:

Overlap NumDS Diffi,t (9)

=
∑
j

[(NumDSj,t −NumDSi,t)×DS HHIj,t ×Weighti,j,t ×Num Overlap DSi,j,t],

where Num Overlap DSi,j,t denotes the number of data scientists hired by investor i who

previously worked for the leading competitor holding stock j. The result in Column (3)

shows that investors are more aware of their data scientist gap and tend to hire more in the

future when they employ data scientists who previously worked for their leading competitors.

One might be concerned that our results are simply driven by broader hiring trends
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in the industry, rather than reflecting a deliberate strategy to stay competitive in the tal-

ent race of data scientist. To address this, we create a placebo data scientist gap measure

(Placebo NumDs Diff), replacing the number of data scientists hired by leading competi-

tors with those hired by leading non-competitors who do not hold the same stock. Column

(4) shows that this placebo measure is not significantly related to the focal investor’s future

data scientist hiring. This finding supports the idea that investors are specifically moni-

toring and responding to their competitors’ information acquisition activities, rather than

blindly following general industry hiring trends. These results highlight the strategic nature

of investors’ efforts to gain a competitive edge through data scientists.

3.3 Effect of Institutions’ Hiring of Data Scientist on Stock Price Informative-
ness

In Section 3.1, we show that institutional investors with data scientists gain an infor-

mation advantage, resulting in higher trading profitability, with the advantage being more

pronounced when the data scientists covering the stocks are concentrated among a few in-

stitutions. While this “information monopoly" benefits the trading profitability of these

investors, it may come at the cost of overall market efficiency. When valuable information is

concentrated within a few hands, the stock prices may not fully reflect all available informa-

tion in the market. This is because a few investors with dominant information power lack the

incentive to swiftly trade on their information (e.g., Kyle, 1985), and the broader investor

base does not have access to the information possessed by those who have the information

power. As a result, the information concentration could delay or distort the incorporation

of new information into stock prices. This could affect the informational content of asset

prices, resulting in lower stock price informativeness. On the other hand, when multiple
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investors possess similar levels of information about a stock, they are likely to trade aggres-

sively, leading to prices quickly incorporating the fundamental information (e.g., Holden and

Subrahmanyam, 1992).

Following Bai et al. (2016) and Kacperczyk et al. (2021), we measure price informativeness

by examining how well current market prices predict future cash flows. Specifically, we

estimate the following regression:

Earningsj,t+h =β0 + β1LogMV Aj,t + β2LogMV Aj,t ×DS HHIj,t + β3DS HHIj,t

+ β4LogMV Aj,t × Log DS Coveragej,t + β5Log DS Coveragej,t

+ LogMV Aj,t × Firm Controls+ Firm Controls+ Fixed Effects,

(10)

where j denotes the firm and t denotes the year. The dependent variable Earningsj,t+h

represents the earnings of firm j in year t+h, scaled by total assets in year t, with h being one

or three for short-term and long-term earnings. The independent variable LogMV Aj,t is the

natural logarithm of the ratio between the firm’s market capitalization and total assets in year

t, representing the stock prices in that year. DS HHIj,t is the data scientist concentration

of firm j in year t. Log DS Coveragej,t is the natural logarithm of the ownership-weighted

average number of data scientists hired by investors of the stock. Firm-level control variables

include institutional ownership as measured by the percentage of shares outstanding held

by 13F institutional investors (IO), Herfindahl index of institutional holdings of the stock

(IO HHI) (Kacperczyk et al., 2024; Xiong et al., 2024), total liability divided by total assets

(Leverage), net property, plant, and equipment divided by total assets (Tangibility), cash

divided by total assets (Cash), sales divided by total assets (Sale). We incorporate firm
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and year fixed effects in all test specifications to control for firm-specific characteristics that

remain constant over time and for overall time trends.

The coefficient β1 measures the average level of price informativeness. If the stock market

functions efficiently overall and stock prices incorporate relevant information that predicts

future earnings, we expect β1 to be positive and significant. The primary coefficient of

interest is β2, which captures the effect of data scientist concentration (DS HHIj,t) on the

sensitivity of future earnings to current stock prices. A positive and significant β2 would

indicate that a higher concentration of data scientists enhances price informativeness, while

a negative and significant β2 would suggest that such concentration impairs it.

In addition to examining the impact of data scientist concentration, we also investigate

how data scientist coverage influences price informativeness. Intuitively, if more data scien-

tists are covering a stock, while other factors remain constant, more information is likely to

be extracted, leading to higher price informativeness. To account for the potential influence

of other firm characteristics, we include interactions between LogMV Aj,t and all control

variables in our analysis.

[Insert Table 8 Here]

In column (1) of Panel A, Table 8, we examine the price informativeness for short-term

earnings (one-year ahead earnings). As expected, the positive and significant coefficient on

the interaction term between LogMV A and Log DS Coverage suggests that when more

data scientists are covering a stock, the stock prices reflect more information relevant to
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future earnings, supporting the notion that data scientists indeed extract useful insights

that enhance price formation.

However, the more critical finding is the negative and significant coefficient on the inter-

action term between LogMV A and DS HHI. This result indicates that as data scientist

concentration increases, the ability of stock prices to reflect information about future earn-

ings declines. In other words, when data scientists are concentrated among a few investors,

the information embedded in stock prices becomes less comprehensive, reducing its predic-

tive power for future earnings. This highlights a critical efficiency cost of concentrated data

scientist coverage, where valuable insights may not be fully integrated into the market, po-

tentially leading to a less efficient price formation process. A one standard deviation increase

in data scientist concentration is associated with a 10.97% decrease from the average price

informativeness.11

The coefficients for the interaction terms between LogMV A and the other control vari-

ables align with intuition. For instance, the positive and significant coefficient for the in-

teraction between LogMV A and IO suggests that broader institutional investor coverage

enhances information discovery. In contrast, the negative and significant coefficient for the

interaction between LogMV A and IO HHI indicates that a more concentrated institutional

investor base hampers information discovery.

The results in column (2) show similar effects for longer-term earnings. The negative and

significant coefficient on the interaction term between LogMV A and DS HHI indicates that

higher data scientist concentration negatively impacts price informativeness for predicting

11One standard deviation of DS HHI × coefficient β2 / price sensitivity of the average firm in our sample
= 0.205 × (-0.023)/0.043 = -10.97%
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earnings three years ahead. This finding suggests that concentrated data scientist coverage

not only affects the short-term predictability of stock prices but extends its adverse effects

to the anticipation of longer-term earnings as well.

We categorize data scientists into three groups based on their roles: data collection, data

analytics, and data maintenance. In Panel B of Table 8, we analyze how the concentration of

each group impacts price informativeness. The findings indicate that all three types of data

scientists contribute to the observed effects. The coefficients for β2 across all data scientist

categories are consistently negative and significant, suggesting that higher concentration,

regardless of the specific data scientist function, is consistently associated with lower price

informativeness.

We demonstrate that data scientist concentration is negatively correlated with price in-

formativeness. However, endogeneity remains a concern, as there could be factors influencing

both the concentration of data scientists hired by institutional investors and the price infor-

mativeness of stocks.

To address this, we use mergers and acquisitions (M&As) among institutional investors

as a source of exogenous variation in data scientist concentration. If M&A decisions are not

motivated by the specific data scientist resources of acquirer and target institutions, these

events can introduce exogenous variation in data scientist concentration of their portfolio

firms. Furthermore, mergers lead to changes in data scientist concentration for portfolio

firms, but these changes are not uniform in direction across all firms in the merged portfolio.

For instance, consider a hypothetical merger between two investors, Investor A and In-

vestor B. Prior to the merger, Investor A employs 10 data scientists, while Investor B employs
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5. Both investors hold stocks in a portfolio, which includes Stock 1 and Stock 2. Investor

C, another large investor in Stock 1, employs significantly more data scientists. Pre-merger,

Investor C’s dominant position in Stock 1 results in a high concentration of data scientists

covering the stock, while the coverage for Stock 2, held only by Investors A and B, re-

mains less concentrated. Post-merger, as Investors A and B combine their holdings and data

scientists, the concentration of data scientists decreases for Stock 1, as the combined firm

diversifies Investor C’s dominance in coverage. However, for Stock 2, where the combined

entity now holds a larger share and employs all the data scientists focused on this stock, the

concentration increases. Therefore, depending on pre-merger conditions, the same merger

can lead to divergent changes in data scientist concentration across different stocks within

the portfolio. This heterogeneity makes it unlikely that M&As are motivated by the intent

to alter the data scientist concentration of portfolio firms, providing a quasi-experimental

setting to isolate and examine the causal impact of data scientist concentration on price

informativeness.

We obtain M&A data from the Securities Data Company’s (SDC) Mergers and Acqui-

sitions Database, applying the following filters: (1) only completed transactions are consid-

ered, (2) transactions must be classified as “Merger,” “Acquisition of Majority Interests,” or

“Acquisition of Assets,” and (3) deal values must exceed $1 million. We then match the

13F institutional investors with the targets and acquirers listed in the SDC database using a

name-matching algorithm, and manually verify each matched pair to ensure accuracy. These

selection criteria yield a final sample of 20 deals over our sample period.

For the 20 deals, we define "affected stocks" as those held by either the acquirer or target
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at the time of the merger announcement. For each affected stock, we compute a hypothetical

data scientist concentration by combining the fraction of shares held and the number of data

scientists employed by the acquirer and the target to form a combined entity. We then

use the holdings the number of data scientists employed by and this combined entity and

other investors in the same quarter to calculate a hypothetical data scientist concentration

post-merger. By comparing this hypothetical concentration with the actual data scientist

concentration for the stock, we determine whether the data scientist concentration decreases

following the merger.

We define a dummy variable, Down, which takes the value of one for the post-merger

period if the hypothetical data scientist concentration is lower than the actual concentration

for the stock. Using a firm-year level sample, we retain data from three years before and

three years after each merger for the affected stocks. We then examine whether a decrease in

data scientist concentration resulting from mergers between financial institutions influences

the price informativeness of these stocks.

[Insert Table 9 Here]

The results are presented in the columns (1) and (2) of Table 9. In both columns, the

positive and significant coefficients on the interaction terms between LogMV A and Down

indicate that an exogenous decrease in data scientist concentration following financial in-

stitution mergers leads to improved price informativeness post-merger. This result holds

regardless of whether data scientist coverage is included as a control variable. These find-

ings provide causal evidence supporting our hypothesis that data scientist concentration
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negatively affects price informativeness.

In columns (3) and (4), we redefine the decrease in data scientist concentration (Down)

based on the actual observed decrease in data scientist concentration post-merger, rather

than the hypothetical decrease used in columns (1) and (2). The results remain consistent

and even stronger, reinforcing our findings.

4 Conclusion

Our study sheds light on the critical role of data scientists in the financial industry, fo-

cusing on their impact on trading profitability, strategic decisions, and market efficiency. We

document that institutional investors who employ more data scientists consistently achieve

higher trading profitability, demonstrating that data scientists help institutions identify and

capitalize on mispriced assets. By leveraging an exogenous increase in the local supply of data

scientists, we establish a causal link between data scientist recruitment and improvements in

trading performance, highlighting the value data scientists bring to portfolio management.

Beyond individual trading advantages, we find that investors make strategic adjustments

in both portfolio allocation and talent acquisition to maximize the benefits provided by their

data scientists. Investors tend to hold more concentrated portfolios, allowing data scientists

to generate deeper insights into specific stocks. Additionally, we observe a competitive

race in the labor market, where investors actively respond to their rivals’ hiring activities,

particularly when they perceive themselves as lagging in data scientist recruitment. These

strategic moves underscore the significance of data scientists as a competitive asset in the

capital market.
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However, our findings also reveal a trade-off between the informational advantages gained

by individual investors and broader market efficiency. When data scientists are concentrated

among a few institutional investors, stock prices become less informative about future earn-

ings. This concentration creates an "information monopoly," where valuable insights are

not fully reflected in stock prices, leading to inefficiencies in price formation. By exploiting

exogenous variations in data scientist concentration resulting from mergers and acquisitions

among institutional investors, we confirm that decreases in data scientist concentration im-

prove price informativeness, further supporting our hypothesis.

Overall, our paper contributes to the growing literature on the role of big data and labor

dynamics in financial markets. We emphasize the unique position of data scientists, who,

unlike traditional data assets, cannot be shared across institutional investors simultaneously.

This distributional concentration plays a critical role in shaping market outcomes and in-

vestor behavior. Our findings have implications for understanding how financial institutions

harness human capital to gain a competitive edge and the potential consequences of these

strategies for market efficiency.
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Figure 1. Number of Data Scientists Hired by Institutional Investors

This figure plots the time series for the total number of data scientists hired by all institutional investors on
an annual frequency.

Figure 2. Average Firm-level Data Scientist Concentration

This figure plots the time-series patterns for the mean of data scientist concentration across all stocks, where
the data scientist concentration is defined as Herfindahl index in Equation (2).
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Table 1. Summary Statistics

This table presents summary statistics of our study. Panels A and B provide summary statistics for the
institutional investor-level sample and firm-level sample, respectively. Our sample covers a period from 2008
to 2021. We exclude firms in finance (SIC 6000-6999) industries for firm-level samples.

Panel A. Institutional Investor-Level Summary Statistics

VarName Mean SD P25 Median P75

NumDS 2.052 10.107 0.000 0.000 0.000
NumAnalysis 1.182 5.884 0.000 0.000 0.000
NumCollect 0.233 1.135 0.000 0.000 0.000
NumMaintain 0.596 3.139 0.000 0.000 0.000
NumProgram 0.591 0.922 0.000 0.000 1.000
CAPM αt+1 0.031 0.929 -0.213 0.023 0.291
FF3 αt+1 0.017 0.905 -0.217 0.013 0.259
FF4 αt+1 0.008 0.863 -0.216 0.015 0.256
LogTNA 19.978 1.702 18.885 19.678 20.847
Turnover 0.126 0.189 0.028 0.067 0.152
FewIndDummy 0.022 0.146 0.000 0.000 0.000
Log Market Cap 26.602 13.792 19.990 26.775 33.300
Volume 0.099 0.073 0.058 0.088 0.123
Gross Profit -0.219 13.077 0.136 0.409 0.519
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Panel B. Firm-Level Summary Statistics

VarName Mean SD P25 Median P75

DS Coverage 17.187 39.641 3.584 9.609 19.454
DS Coverage Analysis 11.218 26.413 2.224 6.140 12.802
DS Coverage Collect 1.398 2.853 0.399 0.959 1.625
DS Coverage Maintain 4.572 11.117 0.874 2.404 5.003
DS HHI 0.409 0.205 0.254 0.357 0.520
Analysis HHI 0.414 0.204 0.259 0.364 0.524
Collect HHI 0.402 0.225 0.232 0.337 0.521
Maintain HHI 0.436 0.207 0.280 0.385 0.550
Earningst+1 -0.018 0.271 -0.039 0.054 0.111
LogMVA -0.156 1.256 -0.764 -0.036 0.637
IO 0.432 0.245 0.228 0.457 0.621
IO HHI 0.090 6.568 0.006 0.016 0.029
LogAsset 6.614 2.175 5.035 6.576 8.112
Leverage 0.511 0.283 0.302 0.501 0.676
Tangibility 0.504 0.453 0.146 0.358 0.784
Cash 0.177 0.205 0.036 0.104 0.231
Sale 0.839 0.707 0.344 0.675 1.138
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Table 2. Institutional and Firm Characteristics, Data Scientist Hiring and Coverage

This table examines the relationship between institutional investor characteristics and their hiring of data
scientists in Panel A, and the relationship between firm characteristics and data scientist coverage in Panel
B. The dependent variable in Panel A, Num DS, represents the total number of data scientists employed
by institutional investors in the year. The independent variables capture various institutional investor
characteristics, including asset size (LogTNA), number of industries covered by the portfolio (Log Number of
SIC ), portfolio turnover (Turnover), number of local data scientist undergraduate programs (NumProgram),
the types of investors (HedgeFund, PensionFund, Bank), and the total number of employees hired by the
investor (NumEmployee). Columns (1), (2), and (3) progressively introduce fixed effects: column (1) includes
no fixed effects, column (2) includes year fixed effects, and column (3) includes investor type by year fixed
effects. Standard errors are clustered at the investment style-by-year level and reported in parentheses. In
Panel B, we analyze the relationship between firm characteristics and the level of data scientist coverage
and concentration. The dependent variable is DS Coverage, the ownership-weighted average number of data
scientists covering a firm’s stock. All independent variables are contemporaneously measured, with their
definitions found in Appendix Table A1. Standard errors are clustered at the institution level in Panel A
and the stock level in Panel B. ***, **, and * indicate the 1%, 5%, and 10% levels of statistical significance,
respectively.

Panel A. Institutional Investor Characteristics and the Hiring of Data Scientists
(1) (2) (3)

Num DS

LogTNA -0.038 -0.075 -0.071
(0.122) (0.127) (0.139)

Num NonDS Employee 0.041*** 0.041*** 0.042***
(0.000) (0.001) (0.001)

Log Number of SIC 0.796*** 0.852*** 0.744**
(0.172) (0.254) (0.313)

Turnover 2.771*** 2.927** 3.672***
(0.979) (1.264) (1.293)

HedgeFund 0.859** 0.970***
(0.397) (0.311)

PensionFund -18.391*** -18.293***
(1.821) (4.883)

Bank -3.099*** -2.961***
(0.935) (0.711)

NumProgram 0.732*** 0.599*** 0.618***
(0.194) (0.199) (0.200)

Institution Type × Time FEs × × ✓
Time FEs × ✓ ×
Obs. 49,617 49,617 49,601
Adj. R2 0.885 0.885 0.888
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Panel B. Firm Characteristics and Data Scientist Coverage
(1) (2)

DS Coverage DS Coverage

IO 35.956*** 38.808***
(3.842) (4.315)

IO HHI 6.168 5.220
(4.972) (4.460)

LogAsset 0.873*** 0.413
(0.210) (0.263)

TobinQ -0.425*** -0.656***
(0.160) (0.212)

LogAge -1.615*** -1.250***
(0.464) (0.482)

Leverage 2.882** 3.772***
(1.232) (1.413)

Tangibility 1.743* 2.435*
(0.908) (1.351)

Cash 6.436*** 6.424***
(1.688) (1.959)

Sale -0.119 -1.452*
(0.401) (0.854)

HasFraud 3.764** 2.894*
(1.570) (1.552)

SIC×Time FEs × ✓
Time FEs ✓ ×
Obs. 46,681 45,873
Adj. R2 0.091 0.071
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Table 3. Institutional Investor’ Trading Profitability Performance and Data Scientist Ad-
vantage

This table presents the baseline results and a detailed breakdown of the effect of data scientist hiring on
investors’ trading profitability in Panel A and B, respectively. In Panel A, we examine the overall impact of
data scientist hiring on trading profitability. Panel B extends the analysis of the relationship between data
scientist hiring and trading profitability by dividing data scientists into three categories: data scientists for
data analysis, data scientists for data collection, and data scientists for data maintenance. The dependent
variables include CAPM αt+1, FF3 αt+1, and FF4 αt+1, representing the position change-weighted alphas
of the portfolio based on the CAPM, Fama-French 3-factor, and Fama-French 4-factor models, respectively.
CAPM αt+1, for instance, is calculated as CAPM αt+1 =

∑
j(Weighti,j,t−Weighti,j,t−1)×CAPM αj,t+1,

where Weighti,j,t represents the portfolio weight the investor i holds in stock j in quater t and CAPMαj,t+1

is the CAMP alpha of the stock j. Investor control variables, with definitions provided in the Appendix
Table A1, are included in all test specifications. The sample is at the investor-year-quarter level, and both
investor and year-quarter fixed effects are applied. Standard errors are clustered at the investor level and
reported in parentheses. ***, **, and * indicate the 1%, 5%, and 10% levels of statistical significance,
respectively.

Panel A. The Overall Impact of Data Scientist Hiring on Trading Profitability
(1) (2) (3)

CAPM αt+1 FF3 αt+1 FF4 αt+1

NumDS 0.004*** 0.002** 0.002***
(0.001) (0.001) (0.001)

LogTNA 0.034*** 0.033*** 0.036***
(0.005) (0.004) (0.004)

Log Number of Firm 0.002 -0.004 -0.011*
(0.006) (0.005) (0.005)

Turnover -0.026 -0.002 -0.064**
(0.028) (0.028) (0.027)

FewIndDummy -0.009 0.005 0.016
(0.020) (0.019) (0.019)

Log Market Cap -0.000 -0.001 -0.000
(0.000) (0.000) (0.000)

Volume -0.238*** 0.024 -0.142**
(0.060) (0.056) (0.057)

Gross Profit 0.000 -0.000 0.000
(0.000) (0.000) (0.000)

Investor FEs ✓ ✓ ✓
Time FEs ✓ ✓ ✓
Obs. 186,478 186,478 186,478
Adj. R2 0.087 0.091 0.090
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Panel B. Different Types of Data Scientist on Investors’ Trading Profitability

(1) (2) (3) (4)
CAPM αt+1 CAPM αt+1 CAPM αt+1 CAPM αt+1

NumDS Analysis 0.006*** 0.005***
(0.001) (0.001)

NumDS Collect 0.012** -0.003
(0.006) (0.007)

NumDS Maintain 0.009*** 0.004*
(0.002) (0.002)

Controls ✓ ✓ ✓ ✓
Investor FEs ✓ ✓ ✓ ✓
Time FEs ✓ ✓ ✓ ✓
Obs. 186,478 186,478 186,478 186,478
Adj. R2 0.087 0.087 0.087 0.087
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Table 4. Local Data Scientist Undergraduate Programs, Data Scientists Hiring, and Investor Performance

This table presents the results of a two-stage least squares (2SLS) regression that examines the impact of exogenous increases in local data scientist
undergraduate programs on investor hiring of data scientists and subsequent trading profitability. The instrument, NumProgram, represents the
cumulative number of local data scientist undergraduate programs established four years prior (t−4) in the same state as the investor. The dependent
variable in the second stage is CAPM αt+1, which measures the trading profitability of the investor. Columns (1) and (2) focus on the total number
of data scientists (NumDS), with column (1) showing the first-stage results where NumProgram instruments for NumDS, and column (2) showing the
second-stage results. Columns (3) through (8) adopt a similar framework, with NumProgram instrumenting for different categories of data scientists.
Variable
∧

represents a variable instrumented by the instrument variable in the first-stage regressions. Investor control variables, as defined in the
Appendix, are included. Investor and year fixed effects are included. Standard errors are clustered at the investor level and reported in parentheses.
***, **, and * indicate the 1%, 5%, and 10% levels of statistical significance, respectively.

(1) (2) (3) (4) (5) (6) (7) (8)
First Stage Second

Stage
First Stage Second

Stage
First Stage Second

Stage
First Stage Second

Stage

NumDS CAPM
αt+1

NumDS
Analysis

CAPM
αt+1

NumDS
Collect

CAPM
αt+1

NumDS
Maintain

CAPM
αt+1

NumDS
∧

0.095***
(0.019)

NumDS Analysis
∧

0.182***
(0.040)

NumDS Collect
∧

2.374**
(1.044)

NumDS Maintain
∧

0.233***
(0.046)

NumProgram 0.327*** 0.170*** 0.013** 0.133***
(0.052) (0.031) (0.006) (0.021)

LogTNA 0.319*** 0.002 0.191*** -0.003 0.015** -0.005 0.113*** 0.006
(0.054) (0.009) (0.030) (0.010) (0.006) (0.023) (0.020) (0.008)

Log Number of Firm 0.098 -0.006 0.055 -0.007 0.014 -0.030 0.022 -0.002
(0.076) (0.009) (0.046) (0.010) (0.009) (0.026) (0.026) (0.008)

Turnover 0.147 -0.039 0.078 -0.039 -0.004 -0.015 0.078* -0.043
(0.100) (0.030) (0.055) (0.030) (0.012) (0.039) (0.040) (0.030)

FewIndDummy 0.577*** -0.065** 0.263*** -0.059** 0.052** -0.133* 0.229*** -0.064**
(0.148) (0.027) (0.101) (0.029) (0.021) (0.075) (0.052) (0.025)

Log Market Cap 0.003 -0.000 0.002 -0.000 0.000 -0.001 0.000 -0.000
(0.005) (0.001) (0.003) (0.001) (0.001) (0.002) (0.002) (0.001)

Volume -1.830*** -0.041 -0.927*** -0.045 -0.122*** 0.075 -0.740*** -0.041
(0.401) (0.076) (0.209) (0.077) (0.045) (0.160) (0.197) (0.082)

Gross Profit -0.000** 0.000 -0.000** 0.000 -0.000* 0.000 -0.000* 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Investor FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Time FEs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Obs. 186,478 186,478 186,478 186,478 186,478 186,478 186,478 186,478
F-statistic 557.998 419.085 60.290 648.098
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Table 5. Institutional Investor’ Trading Profitability and Firm Data Scientist Concentration

This table examines the relationship between an investor’s data scientist advantage in trading profitability
and the concentration of investors’ data scientists at the firms in which they invest. The dependent variables
include CAPM αi,j,t+1, FF3 αi,j,t+1, and FF4 αi,j,t+1, representing the position change-weighted alphas of
the investment in stock j based on the CAPM, Fama-French 3-factor, and Fama-French 4-factor models,
respectively. For example, CAPM αi,j,t+1 is calculated as: CAPM αi,j,t+1 = (Weighti,j,t−Weighti,j,t−1)×
CAPMαj,t+1, where Weighti,j,t represents the portfolio weight the investor i holds in stock j in quater t

and CAPM αj,t+1 is the CAMP alpha of the stock j. Portfolio-weighted NumDS is the number of data
scientists hired by investor i, weighted by the portfolio weight of stock j in investor i’s portfolio. DS HHI
represents the concentration of data scientists for stock j. Investor and firm control variables, with definitions
provided in the Appendix Table A1, are included in all test specifications. The sample is at the investor-
firm-year-quarter level, and both investor, firm, and year-quarter fixed effects are applied. Standard errors
are clustered at the investor level and reported in parentheses. ***, **, and * indicate the 1%, 5%, and 10%
levels of statistical significance, respectively.

(1) (2) (3)
CAPM αi,j,t+1 FF3 αi,j,t+1 FF4 αt+1

Portfolio-Weighted NumDS × DS HHI 0.017 0.017** 0.018***
(0.013) (0.007) (0.006)

DS HHI -0.103*** -0.104*** -0.114***
(0.010) (0.010) (0.010)

Portfolio-Weighted NumDS -0.009 -0.006 -0.008
(0.012) (0.007) (0.006)

LogTNA -0.004 0.005 0.001
(0.004) (0.004) (0.004)

Log Number of Firm -0.007 -0.007 0.005
(0.006) (0.005) (0.005)

Turnover -0.100** -0.025 -0.098**
(0.042) (0.040) (0.042)

FewIndDummy -1.722** -0.616 -0.275
(0.751) (0.704) (0.667)

LogAsset 0.141*** 0.118*** 0.121***
(0.007) (0.006) (0.006)

Tobin Q 0.000*** 0.000*** 0.000***
(0.000) (0.000) (0.000)

ROA -0.005*** -0.004*** -0.005***
(0.001) (0.001) (0.001)

LogAge 0.014* -0.041*** -0.019**
(0.008) (0.008) (0.008)

Investor FEs ✓ ✓ ✓
Firm FEs ✓ ✓ ✓
Time FEs ✓ ✓ ✓
Obs. 30,640,198 30,638,578 30,636,392
Adj. R2 0.008 0.007 0.008
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Table 6. Data Scientist Advantage and Portfolio-Level Data Scientist Concentration

This table examines how institutional investors leverage their data scientist advantage through portfolio
choices. In column (1), the dependent variable is Holding HHI, which measures the Herfindahl-Hirschman
Index (HHI) of portfolio weights across stocks held by the investor in quarter t+1. The dependent variable
in column (2) is Portfolio DS HHI, which is the portfolio-weighted average of the Data Scientist Herfindahl-
Hirschman Index (DS HHI) for the stocks held in the portfolio in quarter t+ 1. The DS HHI measures the
concentration of data scientists across the institutions holding each stock, with higher values indicating more
concentrated coverage. The key independent variable is NumDS, which is the number of data scientists hired
by the investor. All test specifications are consistent with those in Table 3. Standard errors are clustered
at the investor level and reported in parentheses. ***, **, and * indicate the 1%, 5%, and 10% levels of
statistical significance, respectively.

(1) (2)
Holding HHIt+1 Portfolio DS HHIt+1

NumDS 0.004*** 0.004***
(0.001) (0.001)

LogTNA -0.690*** 0.627***
(0.108) (0.122)

Log Number of Firm -4.861*** -0.588***
(0.285) (0.092)

Turnover 0.839 -1.217***
(0.577) (0.368)

FewIndDummy 15.607*** 1.513**
(0.908) (0.584)

Log Market Cap -0.019* -0.090***
(0.010) (0.015)

Volume 0.496 0.457
(1.476) (3.472)

Gross Profit -0.005** 0.001
(0.003) (0.002)

Investor FEs ✓ ✓
Time FEs ✓ ✓
Obs. 186,478 186,478
Adj. R2 0.840 0.621
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Table 7. Investor’s Reaction to Competitor Data Scientist Hiring and Adjustments in Data
Scientist Employment

This table explores how institutional investors adjust their data scientist hiring in response to the hiring activ-
ities of their competitors. The dependent variable is ∆NumDSi,t+2, representing the change in the number
of data scientists employed by investor i from t+1 to t+2. The key independent variable, NumDS Diffi,t,
captures the gap between the number of data scientists employed by the leading competitor (the institution
with the most data scientists holding the same stock) and the number employed by investor i. The detailed
definition is provided in Equation 8. In column (3), the variable Overlap NumDS Diff is added to account
for the number of data scientists hired by investor i in quarter t who previously worked for the leading
competitor before quarter t. Column (4) introduces a placebo variable, Placebo NumDS Diff , which
measures the data scientist gap using non-competitor institutions (those that do not hold the same stock)
instead of competitors. Investor and year fixed effects are included in all test specifications. Investor-level
control variables are included, and standard errors are clustered at the investor style-year level. ***, **, and
* indicate the 1%, 5%, and 10% levels of statistical significance, respectively.

(1) (2) (3) (4)
∆ NumDSt+2

NumDS Diff 0.009** 0.010** 0.010** 0.010**
(0.004) (0.004) (0.004) (0.004)

Overlap NumDS Diff 0.075**
(0.037)

Placebo NumDS Diff 0.001
(0.010)

LogTNA -0.001 -0.001 -0.001
(0.004) (0.004) (0.004)

Log Number of Firm 0.028** 0.028** 0.028**
(0.013) (0.013) (0.013)

Turnover 0.022 0.021 0.022
(0.027) (0.027) (0.027)

FewIndDummy 0.034 0.036 0.035
(0.052) (0.052) (0.052)

Log Market Cap 0.003** 0.003** 0.003**
(0.001) (0.001) (0.001)

Volume -0.190 -0.184 -0.189
(0.129) (0.129) (0.129)

Gross Profit 0.000 0.000 0.000
(0.000) (0.000) (0.000)

Investor FEs ✓ ✓ ✓ ✓
Time FEs ✓ ✓ ✓ ✓
Obs. 44,196 44,196 44,196 44,196
Adj. R2 0.4099 0.4101 0.4110 0.4101
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Table 8. Data Scientist Coverage, Concentration, and Stock Price Informativenesss

This table examines the relationship between the natural logrithm of one plus the number of data scientists
covering a stock (Log DS Coverage), the concentration of data scientists (DS HHI ), and the stock’s price
informativeness. Panel B extends the analysis of the relationship between data scientist coverage, concentra-
tion, and stock price informativeness by categorizing data scientists into three types: data scientists for data
analysis, data scientists for data collection, and data scientists for data maintenance. The dependent vari-
ables are future earnings at t+ 1 and t+ 3 divided by total assets in year t (Earningst+1 and Earningst+3).
The independent variables include the natural logarithm of market capitalization divided by total assets
(LogMVA) and its interaction with Log DS Coverage and DS HHI. In Panel B, Log DS Coverage Analysis,
Log DS Coverage Collect, and Log DS Coverage Maintain are the natural logrithm of number of data sci-
entists for data analysis, data scientists for data collection, and data scientists for data maintenance that
cover the firm. Firm-level control variables, as well as the interactions between these controls and LogMVA,
are included in the regressions. Firm and year fixed effects are applied, and standard errors are clustered at
the firm level and reported in parentheses. ***, **, and * indicate the 1%, 5%, and 10% levels of statistical
significance, respectively.

Panel A. Data Scientist Coverage, Concentration, and Stock Price Informativeness
(1) (2)

Earningst+1 Earningst+3

LogMVA 0.039*** 0.032***
(0.006) (0.012)

LogMVA × DS HHI -0.023*** -0.043***
(0.006) (0.011)

DS HHI 0.020** -0.021
(0.008) (0.016)

LogMVA × Log DS Coverage 0.006*** 0.011***
(0.001) (0.002)

LogMVA × IO 0.027*** 0.039***
(0.006) (0.010)

LogMVA × IO HHI -0.042*** -0.043***
(0.008) (0.016)

LogMVA × Leverage -0.060*** -0.051***
(0.005) (0.010)

LogMVA × Tangibility 0.015*** -0.044***
(0.004) (0.006)

LogMVA × Cash -0.102*** -0.131***
(0.009) (0.019)

LogMVA × Sale 0.028*** 0.022***
(0.002) (0.004)

Log DS Coverage 0.006*** 0.019***
(0.002) (0.004)

IO 0.003 0.020
(0.011) (0.021)

IO HHI -0.044*** -0.061**
(0.014) (0.029)

LogAsset 0.067*** 0.082***
(0.004) (0.009)

Leverage -0.020** -0.066***
(0.009) (0.019)

Tangibility -0.027*** -0.038*
(0.011) (0.020)

Cash 0.057*** 0.067**
(0.013) (0.028)

Sale 0.096*** 0.103***
(0.006) (0.011)

Firm FEs ✓ ✓
Time FEs ✓ ✓
Obs. 46,146 34,947
Adj. R2 0.8007 0.7303
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Panel B. Data Scientist Coverage, Concentration, and Stock Price Informativeness: Different Types of Data Scientist

(1) (2) (3) (4) (5) (6)
Earningst+1 Earningst+3 Earningst+1 Earningst+3 Earningst+1 Earningst+3

LogMVA 0.041*** 0.034*** 0.046*** 0.044*** 0.044*** 0.039***
(0.006) (0.011) (0.006) (0.011) (0.006) (0.011)

LogMVA × Analysis HHI -0.022*** -0.039***
(0.006) (0.012)

Analysis HHI 0.025*** -0.016
(0.008) (0.016)

LogMVA × Log DS Coverage Analysis 0.006*** 0.010***
(0.001) (0.003)

Log DS Coverage Analysis 0.005** 0.018***
(0.002) (0.004)

LogMVA × Collect HHI -0.022*** -0.040***
(0.006) (0.012)

Collect HHI 0.009 -0.023
(0.008) (0.016)

LogMVA × Log DS Coverage Collect 0.008*** 0.014***
(0.002) (0.004)

Log DS Coverage Collect 0.010** 0.026***
(0.004) (0.007)

LogMVA × Maintain HHI -0.021*** -0.032***
(0.006) (0.011)

Maintain HHI 0.013* -0.016
(0.008) (0.015)

LogMVA × Log DS Coverage Maintain 0.005*** 0.009***
(0.001) (0.003)

Log DS Coverage Maintain 0.006** 0.019***
(0.003) (0.005)

Controls ✓ ✓ ✓ ✓ ✓ ✓
Firm FEs ✓ ✓ ✓ ✓ ✓ ✓
Time FEs ✓ ✓ ✓ ✓ ✓ ✓
Obs. 46,146 34,947 46,146 34,947 46,146 34,947
Adj. R2 0.8007 0.7301 0.8004 0.7299 0.8005 0.7299
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Table 9. Exogenous Decrease in Data Scientist Concentration After Institutional Investor
Mergers and Price Informativeness

This table explores the impact of an exogenous decrease in data scientist Herfindahl-Hirschman Index (DS
HHI) following mergers and acquisitions between institutional investors on stock price informativeness. The
sample includes observations from three years before and three years after the merger. The key independent
variable, Down, is a dummy variable equal to one for the stock that experiences a decrease in DS HHI post-
merger. In columns (1) and (2), Down represents a hypothetical decrease in DS HHI based on pre-merger
data, while in columns (3) and (4), Down captures the actual decrease in DS HHI post-merger. Firm and
year fixed effects are included, and standard errors are clustered at the firm level. ***, **, and * indicate
the 1%, 5%, and 10% levels of statistical significance, respectively.

(1) (2) (3) (4)
Earningst+1

Hypothetical DS HHI Down Actual DS HHI Down

LogMVA 0.049*** 0.048*** 0.049*** 0.047***
(0.006) (0.007) (0.006) (0.007)

LogMVA × Down 0.001* 0.002* 0.002** 0.002**
(0.001) (0.001) (0.001) (0.001)

Down -0.001 -0.001 0.001 0.001
(0.001) (0.001) (0.001) (0.001)

LogMVA × Log DS
Coverage

0.001 0.001

(0.001) (0.001)
Log DS Coverage 0.002 0.002

(0.002) (0.002)
Controls ✓ ✓ ✓ ✓
Firm FEs ✓ ✓ ✓ ✓
Time FEs ✓ ✓ ✓ ✓
Obs. 37,986 37,986 37,986 37,986
Adj. R2 0.8171 0.8171 0.8171 0.8171
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5 Appendix
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Table A1. Variable Definition

Variable Definition

Dependent variables

CAPM αt+1 One-factor (Market model) alpha in the next quarter.

FF3 αt+1 Three-factor (Market, SMB, HML model) alpha in the next quarter.

FF4 αt+1 Four-factor (Market, SMB, HML, MOM model) alpha in the next quar-
ter.

Holding HHI The Herfindahl index of investor’s portfolio holdings in the end of year
t.

Prtf DS HHI The weighted average DS HHI of the investor’s portfolio in the end of
year t, weighted by the portfolio weight of each stock in the portfolio.

∆NumDSt+2 The difference between the number of data scientists hired by the in-
vestor in year t+ 2 and year t+ 1.

Earningst+1 EBIT in year t+ 1 divided by total assets in year t.

Independent variables

NumDS The number of data scientists hired by the investor

Log DS Coverage The natural logarithm of the ownership-weighted average number of data
scientists hired by investors of the stock.

DS HHI Herfindahl index of ownership-weighted number of data scientists hired
by investors of the stock.

Log DS Coverage Analysis The natural logarithm of the ownership-weighted average number of data
scientists specializing in data analytics hired by investors of the stock.

Analysis HHI Herfindahl index of ownership-weighted number of data scientists spe-
cializing in data analytics hired by investors of the stock.

Log DS Coverage Collect The natural logarithm of the ownership-weighted average number of data
scientists specializing in data collections hired by investors of the stock.

Collect HHI Herfindahl index of ownership-weighted number of data scientists spe-
cializing in data collection hired by investors of the stock.

Log DS Coverage MaintainThe natural logarithm of the ownership-weighted average number of data
scientists specializing in data maintenance hired by investors of the stock.

Maintain HHI Herfindahl index of ownership-weighted number of data scientists spe-
cializing in data maintenance hired by investors of the stock.

LogMV A The natural logarithm of market capitalization divided by total assets.
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Variable Definition

IO Institutional ownership as measured by the percentage of shares out-
standing held by 13F institutional investors.

IO HHI Herfindahl index of institutional holdings of the stock

Leverage Total liability divided by total assets.

Tangibility Net property, plant, and equipment divided by total assets

Cash Cash divided by total assets

Sale Sales divided by total assets

LogAsset The natural logarithm of total assets of the firm.

LogTNA The natural logarithm of total assets under management of the investor.

Log Number of F irm The natural logarithm of the number of stocks in the investor’s portfolio.

Turnover Investor portfolio turnover during a quarter is calculated as the minimum
of the absolute values of buys and sells made by investor i during quarter
t, divided by the average of the total portfolio value at the end of quarter
t− 1 and quarter t.

FewIndDummy Dummy variable that equals one if the investor’s portfolio covers two or
fewer industries.

Log Market Cap The ownership-weighted average of the natural logarithm of the market
capitalization of stocks in the portfolio.

V olume The ownership-weighted average of the trading volumes of stocks in the
portfolio.

Gross Profit The ownership-weighted average of the gross profit margin of stocks in
the portfolio.

NumDS Diff NumDS Diffi,t =
∑

j [(NumDSj,t−NumDSi,t)×DS HHIj,t×wi,j,t]
where NumDSj,t is the number of data scientists employed by the lead-
ing competitor holding stock j. DS HHIj,t is the HHI of data scientists
for stock j. wi,j,t is a portfolio weight of stock j in investor i’s portfolio.

Overlap NumDS Diff Overlap DS Diffi,t =
∑

j [(NumDSj,t − NumDSi,t) × DS HHIj,t ×
wi,j,t ×Num Overlap DSj,i,t] where Num Overlap DSj,i,t denotes the
number of data scientists hired by investor i who previously worked for
the leading competitor holding stock j.

Placebo NumDS Diff DS Diffi,t =
∑

j [(NumDSj,t−NumDSi,t)×DS HHIj,t×wi,j,t] where
NumDSj,t is the number of data scientists employed by a random lead-
ing non-competitor that does not hold stock j. DS HHIj,t is the HHI
of data scientists for stock j. wi,j,t is a portfolio weight of stock j in
investor i’s portfolio.
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Table A2. ONET Codes of Data Scientists

ONET
Code

Occupation Data Scientists Category

15-2051.00 Data Scientists Data Analytics
15-2041.00 Statisticians Data Analytics
15-1299.06 Digital Forensics Analysts Data Analytics
15-2051.01 Business Intelligence Analysts Data Analytics
15-2051.02 Clinical Data Managers Data Analytics
15-1242.00 Database Administrators Data Collection
15-1243.00 Database Architects Data Collection
15-1212.00 Information Security Analysts Data Maintenance
15-1243.01 Data Warehousing Specialists Data Maintenance
15-1299.05 Information Security Engineers Data Maintenance
15-1299.04 Penetration Testers Data Maintenance
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Table A3. Leading 50 Institutional Investors by Data Scientist Employment

This table lists the top 50 institutional investors ranked by the total number of data scientists
employed in 2021.

Investor NumDS NumAnalysis NumCollect NumMaintain

Morgan Stanley & Co. LLC 4311 2746 259 1306
Credit Suisse Asset Management, LLC
(US)

3288 1877 245 1166

Goldman Sachs & Company, Inc. 3076 2213 95 768
Liberty Mutual Insurance Group 2353 1535 126 692
Blackrock Alternatives Management, LLC 1820 1484 52 284
Fidelity 685 468 48 169
Bank of the West 617 293 19 305
LPL Financial LLC 389 203 25 161
TD Securities, Inc. 352 282 7 63
Brown Brothers Harriman & Company 325 186 29 110
Wells Fargo 309 242 10 57
Kemper Corporation 252 153 17 82
Susquehanna International Group, LLP 237 115 33 89
First Bancorp, Inc 230 87 27 116
Protective Life Corporation 205 148 10 47
PIMCO (US) 196 102 17 77
Barclays Capital Inc. 179 129 13 37
United Bank 178 77 34 67
First National Bank of Omaha 157 81 14 62
StoneX Group Inc. 155 69 11 75
CNO Financial Group, Inc. 142 78 2 62
MFS Investment Management 136 88 5 43
Fisher Investments 134 85 12 37
BMO Capital Markets (US) 133 98 9 26
Bridgewater Associates, LP 133 47 1 85
abrdn Inc. 128 80 3 45
Balyasny Asset Management LP 118 67 6 45
Federated Hermes MDTA LLC 118 72 9 37
BNP Paribas Asset Management USA,
Inc.

115 65 8 42

Allianz Global Investors U.S. LLC 104 68 6 30
Barings LLC 102 42 9 51
State Street Global Advisors (US) 102 60 9 33
Citizens Financial Group, Inc. 96 51 9 36
AmTrust Financial Services, Inc. 94 59 7 28
JP Morgan Asset Management 92 78 2 12
Ally Financial Inc. 89 38 10 41
RBC Global Asset Management (U.S.) Inc. 79 56 6 17
AQR Capital Management, LLC 77 54 4 19
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Investor NumDS NumAnalysis NumCollect NumMaintain

Neuberger Berman, LLC 75 57 1 17
Bank of Oklahoma, N.A. 72 41 16 15
Millennium Management LLC 72 26 6 40
APG Asset Management US, Inc. 67 21 5 41
Tower Research Capital LLC 67 29 8 30
Aegon Asset Management US 66 40 1 25
Bill & Melinda Gates Foundation 65 49 3 13
Dimensional Fund Advisors, L.P. 64 39 14 11
Commonwealth Financial Network 62 31 4 27
Bayview Asset Management, LLC 61 25 9 27
South State Bank 56 30 2 24
The Vanguard Group, Inc. 56 16 6 34
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