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1 Introduction

This paper investigates whether the market price of risk and the market price of uncer-

tainty are significantly positive and whether they predict the time-series and cross-sectional

variation in stock returns. Although the literature has so far shown how uncertainty im-

pacts optimal allocation decisions and asset prices, the results have been provided based on

a theoretical model.1 Earlier studies do not pay attention to empirical testing of whether

the exposures of equity portfolios and individual stocks to uncertainty factors predict their

future returns. We extend the original consumption-based asset pricing models to propose

a conditional asset pricing model with time-varying market risk and economic uncertainty.

According to our model, the premium on equity is composed of two separate terms; the first

term compensates for the standard market risk and the second term represents additional

premium for variance risk. We test whether the time-varying conditional covariances of eq-

uity returns with market and uncertainty factors predict the time-series and cross-sectional

variation in future stock returns.

In this paper, economic uncertainty is proxied by the variance risk premia in the U.S.

equity market. Following Britten-Jones and Neuberger (2000), Jiang and Tian (2005), and

Carr and Wu (2009), we define the variance risk premium (VRP) as the difference between

expected variance under the risk-neutral measure and expected variance under the objective

measure.2 We generate several proxies for financial and economic uncertainty and then

compute the correlations between uncertainty variables and VRP. The first set of measures

1Although formal understanding of uncertainty and uncertainty aversion is poor, there exists a definition
of uncertainty aversion originally introduced by Schmeidler (1989) and Epstein (1999). In recent studies,
uncertainty aversion is defined for a large class of preferences and in different economic settings by Epstein
and Wang (1994), Epstein and Zhang (2001), Chen and Epstein (2002), Klibanoff, Marinacci, and Muk-
erji (2005), Maccheroni, Marinacci, and Rustichini (2006), and Ju and Miao (2012). In addition to these
theoretical papers, Ellsberg’s (1961) experimental evidence demonstrates that the distinction between risk
and uncertainty is meaningful empirically because people prefer to act on known rather than unknown or
ambiguous probabilities.

2Other studies (e.g., Rosenberg and Engle (2002), Bakshi and Madan (2006), Bollerslev, Gibson, and
Zhou (2011), and Bekaert, Hoerova, and Duca (2012)) interpret the difference between the implied and
expected volatilities as an indicator of the representative agent’s risk aversion. Bollerslev, Tauchen, and
Zhou (2009) and Drechsler and Yaron (2011) relate the variance risk premia to economic uncertainty risk.

1



can be viewed as macroeconomic uncertainty proxied by the conditional variance of the U.S.

output growth and the conditional variance of the Chicago Fed National Activity Index

(CFNAI). The second set of uncertainty measures is based on the extreme downside risk

of financial institutions obtained from the left tail of the time-series and cross-sectional

distribution of financial firms’ returns. The third uncertainty variable is related to the

health of the financial sector proxied by the credit default swap (CDS) index. The last

uncertainty variable is based on the aggregate measure of investors’ disagreement about

individual stocks trading at NYSE, AMEX, and NASDAQ. We find that the variance risk

premium is strongly and positively correlated with all measures of uncertainty considered in

the paper. Our results indicate that VRP can be viewed as a sound proxy for financial and

economic uncertainty.

Anderson, Ghysels, and Juergens (2009) introduce a model in which the volatility, skew-

ness and higher order moments of all returns are known exactly, whereas there is uncertainty

about mean returns. In their model, investors’ uncertainty in mean returns is defined as the

dispersion of predictions of mean market returns obtained from the forecasts of aggregate

corporate profits. They find that the price of uncertainty is significantly positive and ex-

plains the cross-sectional variation in stock returns. Bekaert, Engstrom, and Xing (2009)

investigate the relative importance of economic uncertainty and changes in risk aversion in

the determination of equity prices. Distinct from the uncertainty that arises from disagree-

ment among professional forecasters, Bekaert, Engstrom, and Xing (2009) focus on economic

uncertainty proxied by the conditional volatility of dividend growth, and find that both the

conditional volatility of cash flow growth and time-varying risk aversion are important de-

terminants of equity returns.

Different from the aforementioned studies, we propose a conditional asset pricing model

in which economic uncertainty (proxied by VRP) plays a significant role along with the

standard market risk. After introducing a two-factor model with risk and uncertainty, we
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investigate the significance of risk-return and uncertainty-return coefficients using the time-

series and cross-sectional data. Our empirical analyses are based on the size, book-to-market,

momentum, and industry portfolios. We first use the dynamic conditional correlation (DCC)

model of Engle (2002) to estimate equity portfolios’ conditional covariances with the market

portfolio and then test whether the conditional covariances predict future returns on equity

portfolios. We find the risk-return coefficients to be positive and highly significant, implying

a strongly positive link between expected return and market risk. Similarly, we use the

DCC model to estimate equity portfolios’ conditional covariances with the variance risk

premia and then test whether the conditional covariances with VRP predict future returns

on equity portfolios. The results indicate a significantly positive market price of uncertainty.

Equity portfolios (individual stocks) that are highly correlated with uncertainty (proxied by

VRP) carry a significant premium relative to portfolios that are uncorrelated or minimally

correlated with VRP.

We also examine the empirical validity of the conditional asset pricing model by test-

ing the hypothesis that the conditional alphas on the size, book-to-market, and industry

portfolios are jointly zero. The test statistics fail to reject the null hypothesis, indicating

that the two-factor model explains the time-series and cross-sectional variation in equity

portfolios. Finally, we investigate whether the model explains the return spreads between

the high-return (long) and low-return (short) equity portfolios (Small-Big for the size port-

folios; Value-Growth for the book-to-market portfolios; and HiTec-Telcm for the industry

portfolios). The results from testing the equality of conditional alphas for high-return and

low-return portfolios provide no evidence for a significant alpha for Small-Big, Value-Growth,

and HiTec-Telcm arbitrage portfolios, indicating that the two-factor model proposed in the

paper provides both statistical and economic success in explaining stock market anomalies.

Overall, the DCC-based conditional covariances capture the time-series and cross-sectional

variation in returns on the size, book-to-market, and industry portfolios because the essential
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tests of the model are passed: (i) significantly positive risk-return and uncertainty-return

tradeoffs; (ii) the conditional alphas are jointly zero; and (iii) the conditional alphas for

high-return and low-return portfolios are not statistically different from each other.3 These

results are robust to using an alternative specification of the time-varying conditional covari-

ances with an asymmetric GARCH model, using a larger cross-section of equity portfolios

in asset pricing tests, and after controlling for a wide variety of macroeconomic variables,

market illiquidity, and credit risk.4

Finally, we investigate the cross-sectional asset pricing performance of our model based

on the 100 size and book-to-market portfolios. Using the long-short equity portfolios and the

Fama and MacBeth (1973) regressions, we test the significance of a cross-sectional relation

between expected returns on equity portfolios and the portfolios’ conditional covariances

(or betas) with VRP. Quintile portfolios are formed by sorting the 100 Size/BM portfolios

based on their VRP-beta. The results indicate that the equity portfolios in highest VRP-

beta quintile generate 8 percent more annual raw returns and alphas compared to the equity

portfolios in the lowest VRP-beta quintile. These economically and statistically significant

return differences are also confirmed by the Fama-MacBeth cross-sectional regressions, which

produce positive and significant average slope coefficients on VRP-beta.

The rest of the paper is organized as follows. Section 2 presents the conditional asset

pricing model with risk and uncertainty. Section 3 describes the data. Section 4 outlines the

estimation methodology. Section 5 presents the empirical results. Section 6 investigates the

cross-sectional asset pricing performance of our model. Section 7 concludes the paper.

3We find a significantly positive risk-return and uncertainty-return tradeoffs in the cross-section of mo-
mentum portfolios as well. However, the two factor model introduced in the paper rejects the hypotheses
that (ii) the conditional alphas on momentum portfolios are jointly zero and (iii) the conditional alphas for
winner and loser portfolios are not statistically different from each other.

4Alternatively, our empirical result on VRP may be interpreted as compensating for the rare disaster risk
(Gabaix, 2011), jump risk (Todorov, 2010; Drechsler and Yaron, 2011), or tail risk (Bollerslev and Todorov,
2011; Kelly, 2011). Alternatively, VRP can be generated from a habit-formation model with sophisticated
consumption dynamics (Bekaert and Engstrom, 2010). The finding may also be related to the expected
business conditions (Campbell and Diebold, 2009) and its cross-sectional implications for stock returns
(Goetzmann, Watanabe, and Watanabe, 2009).
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2 Economic Motivation for VRP Factor

To guide our economic interpretation of the empirical finding in the main paper, we follow the

strategy of Campbell (1993, 1996) to substitute unobservable consumption-based measures

with observable market-based measures. Under a structural model with recursive preference

and consumption uncertainty (Bollerslev, Tauchen, and Zhou, 2009), one can show that the

two pricing factors—market return and variance risk premium—span all systematic varia-

tions in any risky assets. Our methodology basically follows Campbell, Giglio, Polk, and

Turley (2014) by substituting out the consumption growth in the pricing kernel, and then

we substitute the unobservable economic uncertainty with variance risk premium.

2.1 Implication from Consumption-Based Asset Pricing Model

The representative agent in the economy is endowed with Epstein-Zin-Weil recursive prefer-

ences, and has the value function Vt of her life-time utility as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
(
Et
[
V 1−γ
t+1

]) 1
θ

] θ
1−γ

, (1)

where Ct is consumption at time t, δ denotes the subjective discount factor, γ refers to the

coefficient of risk aversion, θ = 1−γ
1− 1

ψ

, and ψ equals the intertemporal elasticity of substitution

(IES). The key assumptions are that γ > 1 and ψ > 1 hence θ < 0. Consequently, the

logarithm of the pricing kernel, mt+1 ≡ log(Mt+1), may be expressed as,

mt+1 = θ log δ − θ

ψ
gt+1 + (θ − 1)rt+1, (2)

where rt+1 is the return on the asset that pays the consumption endowment flow.

Suppose that log consumption growth and its volatility follow the joint dynamics

gt+1 = µg + σg,tzg,t+1, (3)

σ2
g,t+1 = aσ + ρσσ

2
g,t +

√
qtzσ,t+1, (4)

qt+1 = aq + ρqqt + ϕq
√
qtzq,t+1, (5)
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where µg > 0 denotes the constant mean growth rate, σ2
g,t+1 represents time-varying volatility

in consumption growth, and qt introduces the volatility uncertainty process in the consump-

tion growth process.5

Let wt denote the logarithm of the price-dividend or wealth-consumption ratio; and

conjecture a solution for wt as an affine function of the state variables, σ2
g,t and qt,

wt = A0 + Aσσ
2
g,t + Aqqt. (6)

One can solve for the coefficients A0, Aσ < 0 and Aq < 0 using the standard Campbell and

Shiller (1988) approximation rt+1 = κ0 + κ1wt+1−wt + gt+1. Substituting this equation into

the pricing kernel (2), we get

mt+1 = θ log δ +
θ

ψ
κ0 −

θ

ψ
wt +

θ

ψ
κ1wt+1 − γrt+1, (7)

without referencing consumption growth, as in Campbell, Giglio, Polk, and Turley (2014).

Suppose that asset returns have conditional joint lognormal distributions with time-

varying volatility, then the risk premium on any asset i is given by

Etri,t+1 − rf,t +
1

2
Vartrt+1 = −Covt[mt+1, ri,t+1]. (8)

Using the pricing kernel without consumption (7), where the first three items are known

at time t, we obtain the conditional asset pricing relation between the risk premium of any

asset and the asset’s covariances with the wealth return and time-varying shocks to future

consumption:

Etri,t+1 − rf,t +
1

2
Vartrt+1 = γCovt[ri,t+1, rt+1]− θ

ψ
κ1Covt[ri,t+1, wt+1], (9)

where γ > 1 and − θ
ψ
κ1 > 0.

One obvious advantage of Campbell (1993, 1996) is to substitute out consumption growth

in the asset pricing tests, which also motivates using the market as a feasible proxy for total

5The parameters satisfy aσ > 0, aq > 0, |ρσ| < 1, |ρq| < 1, ϕq > 0; and {zg,t}, {zσ,t} and {zq,t} are iid
Normal(0, 1) processes jointly independent with each other.
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wealth. Furthermore, we substitute out the consumption growth volatility as well, using

the result Vartrt+1 = σ2
g,t + κ2

1

(
A2
σ + A2

qϕ
2
q

)
qt from Bollerslev, Tauchen, and Zhou (2009).

Replacing wt+1 with the wealth-consumption ratio equation (6), we arrive at

Etri,t+1 − rf,t +
1

2
Vartrt+1 +

θ

ψ
κ1AσCovt[ri,t+1,Vart+1rt+2]

= γCovt[ri,t+1, rt+1] +
θ

ψ
κ1[Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq]Covt[ri,t+1, qt+1].

Overlooking the Jensen’s inequality term Vartrt+1 and the high order term Covt[ri,t+1,Vart+1rt+2],

we can see that the risk-return tradeoff γ before Covt[ri,t+1, rt+1] is the risk-aversion coef-

ficient and is positive. While the uncertainty-return tradeoff θ
ψ
κ1[Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq]

before Covt[ri,t+1, qt+1] is not clearly signed, depending on the relative strength of Aσ versus

Aq. In fact, even if the risk-aversion coefficient is zero, the uncertainty-return tradeoff is still

non-zero in general.

Finally, since the consumption volatility-of-volatility qt or economic uncertainty is not

directly observable from the data, we follow the same spirit of Campbell et al. (2014) and

substitute the unobservable uncertainty variable qt with the readily available variance risk

premium measure. Using the solution from Bollerslev, Tauchen, and Zhou (2009) link-

ing variance risk premium (V RPt) and economic uncertainty variable (qt): V RPt = (θ −

1)κ1

[
Aσ + Aqκ

2
1

(
A2
σ + A2

qϕ
2
q

)
ϕ2
q

]
qt, we reach our final result regarding the cross-sectional

pricing implications from both risk and uncertainty proxies:

Etri,t+1 − rf,t +
1

2
Vartrt+1 +

θ

ψ
κ1AσCovt[ri,t+1,Vart+1rt+2]

= γCovt[ri,t+1, rt+1]

+

θ
ψ
κ1[Aσκ

2
1

(
A2
σ + A2

qϕ
2
q

)
− Aq]

(θ − 1)κ1

[
Aσ + Aqκ2

1

(
A2
σ + A2

qϕ
2
q

)
ϕ2
q

]Covt[ri,t+1, V RPt+1]

≡ A · Covt[ri,t+1, rt+1] +B · Covt[ri,t+1, V RPt+1], (10)

where the risk-return tradeoff coefficient A ≡ γ and the uncertainty-return tradeoff coefficient

B ≡
θ
ψ
κ1[Aσκ21(A2

σ+A2
qϕ

2
q)−Aq ]

(θ−1)κ1[Aσ+Aqκ21(A2
σ+A2

qϕ
2
q)ϕ2

q]
. Note that the shocks to VRP and qt are proportional to

each other and of the same sign, therefore carrying the same pricing information.
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Campbell (1993) shows that, in an intertemporal CAPM setting (Merton, 1973), the

appropriate choices for factors relevant in cross-sectional asset pricing tests should be the

current market return and any other variables that have information about the future market

returns. Given the recent evidence that variance risk premium (VRP) possesses a significant

forecasting power for short-term market returns, our result derived above regarding the cross-

sectional asset pricing implication of VRP is not surprising at all. Although the sign of the

uncertainty-return tradeoff coefficient B is not determined for general parameter setting, our

empirical exercise finds it to be positive. The intuition for the positive slope coefficient B, is

that investors dislike the reduced ability to hedge against a deterioration in the investment

opportunity captured by VRP—which positively predicts future market returns. Therefore

investors require a higher return premium to hold the assets or stocks that positively covary

with VRP (Campbell, 1996).

Note that although we look at the cross-sectional pricing implication of variance risk

premium, Ang, Hodrick, Xing, and Zhang (2006) investigated the cross-sectional pricing

implication of the change in VXO. These two approaches are closely related but also have

important differences. VXO is the option market implied volatility measure, while variance

risk premium is the difference between implied and expected variances. Therefore, it is

likely that, in the cross-section, VXO and VRP perform differently in terms of beta pricing.

Alternatively, VRP’s role for cross-sectional asset pricing may also be motivated from a

systematic correlation risk factor, as in Buraschi, Trojani, and Vedolin (2014), where there

is an equivalence between correlation risk premium and variance risk premium (Driessen,

Maenhout, and Vilkov, 2009).

Furthermore, the literature on index option typically finds a negative volatility risk pre-

mium driven by the negative correlation between the volatility shock and shock to market

returns (see, among others, Bates, 1996; Pan, 2002; Bakshi and Kapadia, 2003). In our

consumption-based asset pricing model, although the shocks to consumption growth and
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volatility uncertainty are independent, the market return does contain a component driven

by the consumption volatility uncertainty (Bollerslev, Tauchen, and Zhou, 2009). There-

fore, from a market-based model perspective, variance risk premium shock carries important

information about the equity risk premium—the component due to economic uncertainty.

In essence, variance risk premium is a much cleaner estimate of the uncertainty premium

component in equity return, hence the strong pricing power of variance risk premium for

cross-sectional stock returns.6

2.2 Variance Risk Premia and Economic Uncertainty Measures

For the option-implied variance of the S&P500 market return, we use the end-of-month

Chicago Board of Options Exchange (CBOE) volatility index on a monthly basis (VIX2/12).

Following earlier studies, the daily realized variance for the S&P500 index is calculated as

the summation of the 78 intra-day five-minute squared log returns from 9:30am to 4:00pm

including the close-to-open interval. Along these lines, we compute the monthly realized

variance for the S&P500 index as the summation of five-minute squared log returns in a

month. As discussed in the internet appendix (Section A), variance risk premium (VRP)

at time t is defined as the difference between the ex-ante risk-neutral expectation and the

objective or statistical expectation of the return variance over the [t, t+1] time interval. The

monthly VRP data are available from January 1990 to December 2012.

To give a visual illustration, Figure 1 plots the monthly time-series of the level and change

in the variance risk premium (VRP). The VRP proxy is moderately high around the 1990

and 2001 economic recessions but much higher during the 2008 financial crisis and to a lesser

degree around 1997-1998 Asia-Russia-LTCM crisis. The variance spike during October 2008

already surpasses the initial shock of the Great Depression in October 1929. The huge run-up

of VRP in the fourth quarter of 2008 leads the equity market bottom reached in March 2009.

The sample mean of VRP is 18.47 (in percentages squared, monthly basis), with a standard

6We thank a referee for suggesting this interpretation.
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deviation of 21.90. Notice that the extraordinary skewness (3.76) and kurtosis (27.24) signal

a highly non-Gaussian process for VRP.

According to the conditional asset pricing specification, VRP is viewed as a proxy for

uncertainty. To test whether VRP is in fact associated with alternative measures of uncer-

tainty, we generate some proxies for financial and economic uncertainty. We obtain monthly

values of the U.S. industrial production index from G.17 database of the Federal Reserve

Board and monthly values of the Chicago Fed National Activity Index (CFNAI) from the

Federal Reserve Bank of Chicago for the period January 1990 – December 2012.7 We use the

GARCH(1,1) model of Bollerslev (1986) to estimate the conditional variance of the growth

rate of industrial production and the conditional variance of the CFNAI index. These two

measures can be viewed as macroeconomic uncertainty. The sample correlation between

VRP and economic uncertainty variables is positive and significant; sample correlation is

53.28% with the variance of output growth and 31.01% with the variance of CFNAI index.

Our second set of uncertainty measures is based on the downside risk of financial institu-

tions obtained from the left tail of the time-series and cross-sectional distribution of financial

firms’ returns (Allen, Bali, and Tang, 2012). Specifically, we obtain monthly returns for fi-

nancial firms (6000 ≤ SIC code ≤ 6999) for the sample period January 1990 to December

2012. Then, the 1% nonparametric Value-at-Risk (VaR) measure in a given month is mea-

sured as the cut-off point for the lower one percentile of the monthly returns on financial

firms.8 For each month, we determine the one percentile of the cross-section of returns on fi-

nancial firms, and obtain an aggregate 1% VaR measure of the financial system for the period

1990-2012. In addition to the cross-sectional distribution, we use the time-series daily return

7The CFNAI is a monthly index that determines increases and decreases in economic activity and is
designed to assess overall economic activity and related inflationary pressure. It is a weighted average of
85 existing monthly indicators of national economic activity, and is constructed to have an average value of
zero and a standard deviation of one. Since economic activity tends toward a trend growth rate over time,
a positive index reading corresponds to growth above trend and a negative index reading corresponds to
growth below trend.

8Assuming that we have 900 financial firms in month t, the nonparametric measure of 1% VaR is the 9th
lowest observation in the cross-section of monthly returns.
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distribution to estimate 1% VaR of the financial system. For each month from January 1990

to December 2012, we first determine the lowest daily returns on financial institutions over

the past 1 to 12 months. The catastrophic risk of financial institutions is then computed

by taking the average of these lowest daily returns obtained from alternative measurement

windows. The estimation windows are fixed at 1 to 12 months, and each fixed estimation

window is updated on a monthly basis. These two downside risk measures can be viewed as

a proxy for uncertainty in the financial sector. The sample correlations between VRP and

financial uncertainty variables are positive and significant: 48.42% with the cross-sectional

VaR measure and 38.73% with the time-series VaR measure.

The third uncertainty variable is related to the health of the financial sector proxied by the

credit default swap (CDS) index. We download the monthly CDS data from Bloomberg. For

the sample period January 2004 – December 2012, we obtain monthly CDS data for Bank of

America (BOA), Citigroup (CICN), Goldman Sachs (GS), JP Morgan (JPM), Morgan Stan-

ley (MS), Wells Fargo (WFC), and American Express (AXP). Then, we standardized all

CDS data to have zero mean and unit standard deviation. Finally, we formed the standard-

ized CDS index (EWCDS) based on the equal-weighted average of standardized CDS values

for the 7 major financial firms. For the common sample period 2004-2012, the correlation

between VRP and EWCDS is positive, 44.21%, and highly significant.

The last uncertainty variable is based on the aggregate measure of investors’ disagree-

ment about individual stocks trading at NYSE, AMEX, and NASDAQ. Following Diether,

Malloy, and Scherbina (2002), we use dispersion in analysts’ earnings forecasts as a proxy

for divergence of opinion. It is likely that investors partly form their expectations about a

particular stock based on the analysts’ earnings forecasts. If all analysts are in agreement

about expected returns, uncertainty is likely to be low. However, if analysts provide very

different estimates, investors are likely to be unclear about future returns, and uncertainty

is high. The sample correlation between VRP and the aggregate measure of dispersion is
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about 15.23%. Overall, these results indicate that the variance risk premia is strongly and

positively correlated with all measures of uncertainty considered here. Hence, VRP can be

viewed as a sound proxy for financial and economic uncertainty.

3 Data

3.1 Equity Portfolios

We use the monthly excess returns on the value-weighted aggregate market portfolio and

the monthly excess returns on the 10 value-weighted size, book-to-market, momentum, and

industry portfolios. The aggregate market portfolio is represented by the value-weighted

NYSE-AMEX-NASDAQ index. Excess returns on portfolios are obtained by subtracting

the returns on the one-month Treasury bill from the raw returns on equity portfolios. The

data are obtained from Kenneth French’s online data library.9 We use the longest common

sample period available, from January 1990 to December 2012, yielding a total of 276 monthly

observations.

Table I of the internet appendix presents the monthly raw return and CAPM Alpha

differences between high-return (long) and low-return (short) equity portfolios. The results

are reported for the size, book-to-market (BM), momentum (MOM), and industry portfo-

lios for the period January 1990 – December 2012.10 The OLS t-statistics are reported in

parentheses. The Newey and West (1987) t-statistics are given in square brackets.

For the ten size portfolios, “Small” (Decile 1) is the portfolio of stocks with the smallest

market capitalization and “Big” (Decile 10) is the portfolio of stocks with the biggest market

capitalization. For the 1990-2012 period, the average return difference between the Small and

Big portfolios is 0.31% per month with the OLS t-statistic of 1.02 and the Newey-West (1987)

t-statistic of 0.99, implying that small stocks on average do not generate higher returns than

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
10Since the monthly data on variance risk premia (VRP) start in January 1990, our empirical analyses

with equity portfolios and VRP are based on the sample period January 1990 - December 2012.
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big stocks. In addition to the average raw returns, Table I of the internet appendix presents

the intercept (CAPM alpha) from the regression of Small-Big portfolio return difference on

a constant and the excess market return. The CAPM Alpha (or abnormal return) for the

long-short size portfolio is 0.25% per month with the OLS t-statistic of 0.84 and the Newey-

West t-statistic of 0.80. This economically and statistically insignificant Alpha indicates that

the static CAPM does explain the size effect for the 1990-2012 period.

For the ten book-to-market portfolios, “Growth” is the portfolio of stocks with the lowest

book-to-market ratios and “Value” is the portfolio of stocks with the highest book-to-market

ratios. For the sample period January 1990 – December 2012, the average return difference

between the Value and Growth portfolios is economically and statistically insignificant; 0.23%

per month with the OLS t-statistic of 0.77 and the Newey-West t-statistic of 0.69, implying

that value stocks on average do not generate higher returns than growth stocks. Similar to

our findings for the size portfolios, the unconditional CAPM explains the value premium for

the 1990-2012 period; the CAPM Alpha (or abnormal return) for the long-short book-to-

market portfolio is only 0.21% per month with the OLS t-statistic of 0.69 and the Newey-West

t-statistic of 0.54.

For the ten momentum portfolios, Loser (Decile 1) is the portfolio of stocks with the

lowest cumulative return over the previous 11 months (skipping the past one month) and

Winner (Decile 10) is the portfolio of stocks with the highest cumulative return over the

previous 11 months.11 For the 1990-2012 period, the average return difference between the

Loser and Winner portfolios is 1.05% per month with the OLS t-statistic of 2.05 and the

Newey-West t-statistic of 1.91, implying that winner stocks on average generate economically

and statistically higher returns than loser stocks. In addition to the average raw returns,

Table I of the internet appendix presents the CAPM alpha from the regression of Winner-

11Following Jegadeesh and Titman (1993), the momentum variable for each stock in month t is defined as
the cumulative return on the stock over the previous 11 months starting 2 months ago, i.e., the cumulative
return from month t− 12 to month t− 2.
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Loser portfolio return difference on a constant and the excess market return. The CAPM

alpha for the long-short momentum portfolio is 1.33% per month with the OLS t-statistic of

2.67 and the Newey-West t-statistic of 2.82. This economically and statistically significant

alpha indicates that the static CAPM does not explain the momentum effect for the 1990-

2012 period.

Similar to the size and value effects, the industry effect in the U.S. equity market is

statistically weak over the past two decades. The average raw and risk-adjusted return

differences between the high-return (HiTech) and low-return (Telcm) industry portfolios are

statistically insignificant for the sample period 1990-2012.

Earlier studies starting with Fama and French (1992, 1993) provide evidence for the

significant size and value premiums for the post-1963 period. Some readers may find the

insignificant size and value premiums for the 1990-2012 period controversial. Hence, in Table

I of the internet appendix, we examine the significance of size and book-to-market effects for

the longest sample period July 1926 - December 2012 and the subsample period July 1963

- December 2012. The results indicate significant raw return difference between the Value

and Growth portfolios for both sample periods and significant risk-adjusted return difference

(Alpha) only for the post-1963 period. Consistent with the findings of earlier studies, we find

significant raw return difference between the Small and Big stock portfolios for the 1926-2012

period, which becomes very weak for the post-1963 period. The CAPM Alpha (or abnormal

return) for the long-short size portfolio is economically and statistically insignificant for both

sample periods.

4 Estimation Methodology

Following Bali (2008) and Bali and Engle (2010), our estimation approach proceeds in steps.

1) We take out any autoregressive elements in returns and VRP and estimate univariate

GARCH models for all returns and VRP.
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2) We construct standardized returns and compute bivariate DCC estimates of the cor-

relations between each portfolio and the market and between each portfolio and shock

to VRP using the bivariate likelihood function.

3) We estimate the expected return equation as a panel with the conditional covariances

as regressors. The error covariance matrix specified as seemingly unrelated regression

(SUR). The panel estimation methodology with SUR takes into account heteroskedas-

ticity and autocorrelation as well as contemporaneous cross-correlations in the error

terms.

The following subsections provide details about the estimation of time-varying covariances

and the estimation of time-series and cross-sectional relation between expected returns and

risk and uncertainty.

4.1 Estimating Time-Varying Conditional Covariances

We estimate the conditional covariance between excess returns on equity portfolio i and

the market portfolio m based on the mean-reverting dynamic conditional correlation (DCC)

model:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1 (11)

Rm,t+1 = αm0 + αm1 Rm,t + εm,t+1 (12)

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t (13)

Et
[
ε2
m,t+1

]
≡ σ2

m,t+1 = βm0 + βm1 ε
2
m,t + βm2 σ

2
m,t (14)

Et [εi,t+1εm,t+1] ≡ σim,t+1 = ρim,t+1 · σi,t+1 · σm,t+1 (15)

ρim,t+1 =
qim,t+1√

qii,t+1 · qmm,t+1

, qim,t+1 = ρ̄im + a1 · (εi,t · εm,t − ρ̄im) + a2 · (qim,t − ρ̄im) (16)

whereRi,t+1 andRm,t+1 denote the time (t+1) excess return on equity portfolio i and the mar-

ket portfolio m over a risk-free rate, respectively, and Et [·] denotes the expectation operator
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conditional on time t information. σ2
i,t+1 is the time-t expected conditional variance of Ri,t+1,

σ2
m,t+1 is the time-t expected conditional variance of Rm,t+1, and σim,t+1 is the time-t expected

conditional covariance between Ri,t+1 and Rm,t+1. ρim,t+1 = qim,t+1/
√
qii,t+1 · qmm,t+1 is the

time-t expected conditional correlation between Ri,t+1 and Rm,t+1, and ρ̄im is the uncondi-

tional correlation. To ease the parameter convergence, we use correlation targeting assuming

that the time-varying correlations mean reverts to the sample correlations ρ̄im.

We estimate the conditional covariance between the excess return on each equity portfolio

i and the innovation in the variance risk premia V RP , σi,V RP , using an analogous DCC

model:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1 (17)

V RPt+1 = αV RP0 + αV RP1 V RPt + εV RP,t+1 (18)

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t (19)

Et
[
ε2
V RP,t+1

]
≡ σ2

V RP,t+1 = βV RP0 + βV RP1 ε2
V RP,t + βV RP2 σ2

V RP,t (20)

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = ρi,V RP,t+1 · σi,t+1 · σV RP,t+1 (21)

ρi,V RP,t+1 =
qi,V RP,t+1√

qii,t+1 · qV RP,t+1

,

qi,V RP,t+1 = ρ̄i,V RP + a1 · (εi,t · εV RP,t − ρ̄i,V RP ) + a2 · (qi,V RP,t − ρ̄i,V RP ) (22)

where σi,V RP,t+1 is the time-t expected conditional covariance between Ri,t+1 and V RP shock
t+1 .

ρi,V RP,t+1 is the time-t expected conditional correlation between Ri,t+1 and V RP shock
t+1 . We

use the same DCC model to estimate the conditional covariance between the market portfolio

m and the shock to the variance risk premia V RP , σm,V RP .

Equations (17), (18), and (21) indicate that the shock to variance risk premia is obtained

from an autoregressive of order one process. Instead of using the change in the variance risk

premia, ∆V RP = V RPt+1 − V RPt, that restricts αV RP0 = 0 and αV RP1 = 1, we use a more
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general econometric specification to generate V RP shock
t+1 , i.e., αV RP0 and αV RP1 are estimated

using the AR(1) specification in equation (18).

We estimate the conditional covariances of each equity portfolio with the market portfolio

and with V RP shock using the maximum likelihood method described in the internet ap-

pendix (Section B). Then, as discussed in the following section, we estimate the time-series

and cross-sectional relation between expected return and risk and uncertainty as a panel

with the conditional covariances as regressors.

At an earlier stage of the study, we use 10 equity portfolios and estimate in one step the

time-varying conditional correlations as well as the parameters of time-varying conditional

mean in a Multivariate GARCH-in-mean framework. To ease the parameter convergence,

we use correlation targeting assuming that the time-varying correlations mean reverts to the

sample correlations. To reduce the overall time of maximizing the conditional log-likelihood,

we first estimate all pairs of bivariate GARCH-in-mean model and then use the median values

of A, B, a1 and a2 as starting values along with the bivariate GARCH-in-mean estimates of

variance parameters (β0, β1, β2). Even after going through these steps to increase the speed

of parameter convergence, it takes a long time to obtain the full set of parameters in the

Multivariate GARCH-in-mean model. Similar to the findings of Bali and Engle (2010), the

results from the one-step estimation of 10 equity portfolios turned out to be similar to those

obtained from the two-step estimation procedure.12

12Bali and Engle (2010) also estimate the risk aversion coefficient in two steps; first they obtain the
conditional covariances with DCC and then they use the covariance estimates in the panel regression with a
common slope coefficient. In this setting, since the covariance matrices implied by the DCC model are not
used in estimating risk premia or in computing their standard errors, a common worry in testing asset pricing
models is that time-varying covariances are measured with error. Using different samples, they show that
the significance of measurement errors in covariances is small. Hence, the one-step and two-step estimation
procedures generate similar slope coefficients and standard errors.

17



4.2 Estimating Risk-Uncertainty-Return Tradeoff

Given the conditional covariances, we estimate the portfolio-specific intercepts and the com-

mon slope estimates from the following panel regression:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1 (23)

Rm,t+1 = αm + A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1 (24)

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the ex-

cess return on portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1),

Covt

(
Ri,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance between the ex-

cess return on portfolio i and the innovation in the variance risk premia (V RP shock
t+1 ),

Covt

(
Rm,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance between the ex-

cess return on the market portfolio m and the variance risk premia (V RP shock
t+1 ), and

V art (Rm,t+1) is the time-t expected conditional variance of excess returns on the market

portfolio.

We estimate the system of equations in (23)-(24) using a weighted least square method

that allows us to place constraints on coefficients across equations. We compute the t-

statistics of the parameter estimates accounting for heteroskedasticity and autocorrelation

as well as contemporaneous cross-correlations in the errors from different equations. The es-

timation methodology can be regarded as an extension of the seemingly unrelated regression

(SUR) method, the details of which are in the internet appendix (Section C).

5 Empirical Results

In this section we first present results from the 10 decile portfolios of size, book-to-market,

momentum, and industry. Second, we discuss the economic significance of the two-factor con-

ditional asset pricing model at the market level. Finally, we provide a battery of robustness

checks.
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5.1 Ten Decile Portfolios of Size, Book-to-Market, Momentum,
and Industry

The common slopes and the intercepts are estimated using the monthly excess returns on the

10 value-weighted size, book-to-market, momentum, and industry portfolios for the sample

period January 1990 to December 2012. The aggregate stock market portfolio is measured

by the value-weighted CRSP index. Table 1 reports the common slope estimates (A,B), the

abnormal returns or conditional alphas for each equity portfolio (αi) and the market portfolio

(αm), and the t-statistics of the parameter estimates. The last two rows, respectively, show

the Wald statistics; Wald1 from testing the joint hypothesis H0 : α1 = ... = α10 = αm = 0,

and Wald2 from testing the equality of conditional alphas for high-return and low-return

portfolios (Small vs. Big; Value vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The

p-values of Wald1 and Wald2 statistics are given in square brackets.

The risk aversion coefficient is estimated to be positive and highly significant for all

equity portfolios: A = 2.77 with a t-statistic of 2.83 for the size portfolios, A = 2.56 with a

t-statistic of 2.66 for the book-to-market portfolios, A = 2.23 with a t-statistic of 2.08 for the

momentum portfolios, and A = 3.48 with a t-statistic of 2.38 for the industry portfolios.13

These results imply a positive and significant relation between expected return and market

risk.14 Consistent with the conditional asset pricing specification, the uncertainty aversion

coefficient is also estimated to be positive and highly significant for all equity portfolios:

B = 0.0037 with a t-statistic of 3.54 for the size portfolios, B = 0.0059 with a t-statistic

of 2.58 for the book-to-market portfolios, B = 0.0030 with a t-statistic of 2.17 for the

momentum portfolios, and B = 0.0062 with a t-statistic of 2.85 for the industry portfolios.

These results indicate a significantly positive market price of uncertainty in the aggregate

13Our risk aversion estimates ranging from 2.23 to 3.48 are very similar to the median level of risk aversion,
2.52, identified by Bekaert, Engstrom, and Xing (2009) in a different model.

14Although the literature is inconclusive on the direction and significance of a risk-return tradeoff, some
studies do provide evidence supporting a positive and significant relation between expected return and
risk (e.g., Bollerslev, Engle, and Wooldridge (1988), Ghysels, Santa-Clara, and Valkanov (2005), Guo and
Whitelaw (2006), Guo and Savickas (2006), Lundblad (2007), Bali (2008), and Bali and Engle (2010)).
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stock market. Equity portfolios with higher sensitivity to increases in the variance risk

premia are expected to generate higher returns next period.

One implication of the conditional asset pricing model is that the intercepts (αi, αm) are

not jointly different from zero assuming that the conditional covariances of equity portfolios

with the market portfolio and the variance risk premia have enough predictive power for

expected future returns. To examine the empirical validity of the conditional asset pricing

model, we test the joint hypothesis H0 : α1 = ... = α10 = αm = 0. As presented in Table 1,

the Wald1 statistics for the size, book-to-market, and industry portfolios are, respectively,

16.40, 10.43, and 14.36 with the corresponding p-values of 12.69%, 49.22%, and 21.37%. The

significantly positive risk and uncertainty aversion coefficients and the insignificant Wald1

statistics indicate that the two-factor model introduced in the paper is empirically sound.

We also investigate whether the model explains the return spreads between Small and

Big; Value and Growth; and HiTec and Telcm portfolios. The last row in Table 1 reports

Wald2 statistics from testing the equality of conditional alphas for high-return and low-return

portfolios (H0 : α1 = α10). These intercepts capture the monthly abnormal returns on each

portfolio that cannot be explained by the conditional covariances with the market portfolio

and the variance risk premia.

The first column of Table 1 shows that the abnormal return on the small-stock portfolio

is α1 = 0.53% per month with a t-statistic of 1.32, whereas the abnormal return on the big-

stock portfolio is α10 = 0.21% per month with a t-statistic of 0.70. The Wald2 statistic from

testing the equality of alphas on the Small and Big portfolios is 1.07 with a p-value of 30.09%,

indicating that there is no significant risk-adjusted return difference between the small-stock

and big-stock portfolios. The second column provides the conditional alphas on the Value

and Growth portfolios: α1 = 0.39% per month with a t-statistic of 1.01, and α10 = 0.78%

per month with a t-statistic of 1.89. The Wald2 statistic from testing H0 : α1 = α10 is 1.68

with a p-value of 19.49%, implying that the conditional asset pricing model explains the
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value premium, i.e., the risk-adjusted return difference between value and growth stocks is

statistically insignificant. The last column shows that the conditional alphas on HiTec and

Telcm portfolios are, respectively, 0.28% and 0.12% per month, generating a risk-adjusted

return spread of 16 basis points per month. As reported in the last row, the Wald2 statistic

from testing the significance of this return spread is 0.20 with a p-value of 65.47%, yielding

insignificant industry effect over the sample period 1990-2012.

We examine the empirical validity of the conditional asset pricing model for momentum

portfolios by testing the hypothesis that the conditional alphas on decile portfolios are jointly

zero. As reported in Table 1, the Wald1 statistic is 22.15 (p-value = 2.33%), implying that

the conditional covariances of momentum portfolios with the market and the variance risk

premia do not capture the entire time-series and cross-sectional variation in expected returns

of momentum portfolios. We also investigate whether the two-factor model explains the

return spreads between Winner and Loser portfolios. The Wald2 statistic from testing the

equality of conditional alphas, α1 = α10, is 4.98 with a p-value of 2.56%.

Overall, the DCC-based conditional covariances capture the time-series and cross-sectional

variation in returns on the size, book-to-market, and industry portfolios because the essential

tests of the conditional asset pricing model are passed: (i) significantly positive risk-return

and uncertainty-return tradeoffs; (ii) the conditional alphas are jointly zero; and (iii) the

conditional alphas for high-return and low-return portfolios are not statistically different

from each other. However, the statistically significant risk-adjusted return spread (α10−α1)

between winner and loser portfolios implies failure of the conditional asset pricing model in

explaining the momentum effect.

5.2 Economic Significance at the Market Level

In this section, we test whether the risk-return (A) and uncertainty-return (B) coefficients

are sensible and whether the uncertainty measure is associated with macroeconomic state
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variables.

Specifically, we rely on equation (24) and compute the expected excess return on the

market portfolio based on the estimated prices of risk and uncertainty as well as the sample

averages of the conditional covariance measures:

Et [Rm,t+1] = αm + A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
(25)

where αm = 0.0026, A = 2.77, and B = 0.0037 for the 10 size portfolios; αm = 0.0042,

A = 2.56, and B = 0.0059 for the 10 book-to-market portfolios; αm = 0.0032, A = 2.23, and

B = 0.0030 for the 10 momentum portfolios; and αm = 0.0026, A = 3.48, and B = 0.0062

for the 10 industry portfolios (see Table 1). The sample averages of V art (Rm,t+1) and

Covt

(
Rm,t+1, V RP

shock
t+1

)
are 0.002069 and -0.7426, respectively.15 These values produce

Et [Rm,t+1] = 0.56% per month when the parameters are estimated using the 10 size port-

folios, Et [Rm,t+1] = 0.51% per month when the parameters are estimated using the 10

book-to-market portfolios, Et [Rm,t+1] = 0.56% per month when the parameters are esti-

mated using the 10 momentum portfolios, and Et [Rm,t+1] = 0.52% when the parameters are

estimated using the 10 industry portfolios.

To evaluate the performance of our model with risk and uncertainty, we calculate the

sample average of excess returns on the market portfolio, which is a standard benchmark

for the market risk premium. The sample average of Rm,t+1 is found to be 0.53% per

month for the period January 1990 – December 2012, indicating that the estimated market

risk premiums of 0.51% – 0.56% are very close to the benchmark. This again shows solid

performance of the two-factor model introduced in the paper.

To further appreciate the economics behind the apparent connection between the variance

risk premium (VRP) and the time-series and cross-sectional variations in expected stock

returns, Figure 2 plots the VRP together with the monthly growth rate of real GDP per

15The negative value for the conditional covariance of the market return with the VRP factor is consistent
with the consumption-based asset pricing model and the negative contemporaneous correlation between the
market return and the VRP factor reported by Bollerslev, Tauchen, and Zhou (2009).
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capita. As seen from the figure, there is a tendency for VRP to rise in the month before a

decline in GDP, while it typically narrows ahead of an increase in GDP. Indeed, the sample

correlation equals -0.19 between lag VRP and current GDP (as first reported in Bollerslev

et al., 2009), with a standard error of 0.06 (p-value = 0.13%). In other words, VRP as

a proxy for economic uncertainty does seem to negatively relate to future macroeconomic

performance.

Thus, not only the difference between the implied and expected variances positively

covaries with stock returns, it also covaries negatively with future growth rates in GDP.

Intuitively, when VRP is high (low), it generally signals a high (low) degree of aggregate

economic uncertainty. Consequently agents tend to simultaneously cut (increase) their con-

sumption and investment expenditures and shift their portfolios from more (less) to less

(more) risky assets. This in turn results in a rise (decrease) in expected excess returns for

stock portfolios that covaries more (less) with the macroeconomic uncertainty, as proxied by

VRP.

As mentioned earlier in Section 2, we provide a two-factor consumption-based asset pric-

ing model in which the consumption growth and its volatility follow the joint dynamics and

hence VRP affects expected future returns. In essence, our finding of a positive significant re-

lation between economic uncertainty measure and stock expected returns, is consistent with

the consumption-based model’s implication that heightened VRP does signal the worsening

of macroeconomic fundamentals.

5.3 Robustness Check

We have so far provided evidence from the individual equity portfolios (10 size, 10 book-

to-market, 10 momentum, and 10 industry portfolios). We now investigate whether our main

findings remain intact if we use a joint estimation with all test assets simultaneously (total of

40 portfolios). Table 2 reports the parameter estimates and the t-statistics that are adjusted
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for heteroskedasticity and autocorrelation for each series and the cross-correlations among

the error terms. As shown in the first row of Table 2, the risk aversion coefficient is estimated

to be positive and highly significant for the pooled dataset: A = 3.16 with a t-statistic of

5.39, implying a positive and significant relation between expected return and market risk.

Similar to our earlier findings, the uncertainty aversion coefficient is also estimated to be

positive and highly significant for the joint estimation: B = 0.0037 with a t-statistic of 5.51.

These results indicate a significantly positive market price of uncertainty when all portfolios

are combined together. Equity portfolios with higher sensitivity to increases in VRP are

expected to generate higher returns next period.

The Wald1 and Wald2 statistics reported in Table 2 indicate that the conditional alphas on

the size, book-to-market, and industry portfolios are jointly zero and the conditional alphas

for high-return (small, value, HiTech) and low-return (big, growth, Telcm) portfolios are not

statistically different from each other. Hence, the DCC-based conditional covariances cap-

ture the time-series and cross-sectional variation in returns on the size, book- to-market, and

industry portfolios. Similar to our earlier findings, the two-factor model with risk and uncer-

tainty provides both statistical and economic success in explaining stock market anomalies,

except momentum.

As discussed in Section 4.1, we have so far used a more general econometric specification

to generate V RP shock
t+1 instead of using the change in the variance risk premia. As shown

in equation (18), the shock to variance risk premia is obtained from an autoregressive of

order one process. In this section, we use a simpler measure of V RP shock
t+1 ≡ ∆V RPt+1 =

V RPt+1 − V RPt , that restricts αV RP0 = 0 and αV RP1 = 1 in equation (18). As presented

in Table 3, the results from the change in VRP are very similar to those reported in Table

2. The risk aversion and uncertainty aversion coefficients are estimated to be positive and

highly significant: A = 3.03 with a t-statistic of 4.65 and B = 0.0039 with a t-statistic of

3.41, indicating significantly positive market prices of risk and uncertainty. Consistent with
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our earlier findings, the Wald1 and Wald2 statistics reported in Table 3 indicate that the

two-factor model with risk and uncertainty provides both statistical and economic success

in explaining stock market anomalies, except momentum.

In Section D of the internet appendix, we provide a battery of robustness checks. There

appears to be some controversy in the econometrics literature around the consistency of

maximum likelihood parameter estimates generated by the DCC models.16 To address this

potential concern, in Section D.1 of the internet appendix, we use an alternative econometric

methodology and estimate the conditional covariances based on the generalized conditional

covariance (GCC) specification of Bali (2008). Table II of the internet appendix shows that

the results from the GCC model are very similar to those reported in the paper. Second,

we estimate the DCC-based conditional covariances using the Asymmetric GARCH model

of Glosten, Jagannathan, and Runkle (1993). Table III of the internet appendix shows that

our main findings from the Asymmetric GARCH model are very similar to those reported in

Table 1.17 Third, we examine whether the model’s performance changes when we use a larger

cross-section of industry portfolios. Table IV of the internet appendix shows a significantly

positive market price of uncertainty in the cross-section of large number of equity portfolios;

portfolios with higher correlation with the shock to VRP generate higher returns next month

for the value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios. Also, the differences in

conditional alphas are both economically and statistically insignificant, showing that the two-

factor model introduced in the paper provides success in explaining industry effects. Fourth,

we provide robustness analysis when controlling for popular macroeconomic and financial

variables. Table V of the internet appendix indicates that after controlling for variables

associated with business conditions, the time-varying exposures of equity portfolios to the

16See Aielli (2013), Caporin and McAleer (2013), and the proposed solution in Noureldin, Shephard, and
Sheppard (2014).

17An alternative approach to estimating risk-return coefficient for the stock market portfolio is introduced
by Ghysels, Santa-Clara, and Valkanov (2005). An application of the mixed data sampling (or MIDAS)
approach to conditional covariances in a panel data setting represents an important direction for future
research (see Ghysels, Sinko, and Valkanov, 2006; Andreou, Ghysels, and Kourtellos, 2010).
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market and uncertainty factors carry positive risk premiums. Fifth, we provide results from

individual stocks trading at the NYSE, AMEX, and NASDAQ. Table VI of the internet

appendix reports a significantly positive market price of uncertainty for large and liquid

stocks trading in the U.S. equity market. Sixth, we test whether the predictive power of the

variance risk premia is subsumed by the market illiquidity and/or credit risk. Table VII of

the internet appendix clearly shows that controlling for the market illiquidity and default

risk individually and simultaneously does not influence the significant predictive power of the

conditional covariances of portfolio returns with the market risk and VRP factors. Finally, we

test whether the conditional asset pricing model with risk and uncertainty outperforms the

conditional CAPM in terms of statistical fit. Table VIII of the internet appendix presents

the realized monthly average excess returns on equity portfolios and the cross-section of

expected excess returns generated by the one-factor conditional CAPM and the two-factor

conditional asset pricing model. Clearly the newly proposed model with risk and uncertainty

provides much more accurate estimates of expected returns on equity portfolios.

6 Cross-Sectional Relation between VRP-beta and Ex-

pected Returns

In this section, we investigate the cross-sectional asset pricing performance of our model

by testing the significance of a cross-sectional relation between expected returns on equity

portfolios and the portfolios’ conditional covariances with V RP shock. Following Bali (2008)

and Campbell, Giglio, Polk, and Turley (2014), we use the size and book-to-market portfolios

of Kenneth French as test assets. First, we estimate the DCC-based conditional covariances of

100 Size/BM portfolios with V RP shock and then for each month we form quintile portfolios

sorted based on the portfolios’ conditional covariances (or betas) with V RP shock. Since

the conditional variance of V RP shock is the same across portfolios, we basically sort equity
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portfolios based on their VRP-beta:

V RP beta
i,t =

cov
[
Ri,t+1, V RP

shock
t+1 |Ωt

]
var
[
V RP shock

t+1 |Ωt

] , (26)

where V RP beta
i,t is the VRP-beta of portfolio i in month t, cov

[
Ri,t+1, V RP

shock
t+1 |Ωt

]
is the

conditional covariance of portfolio i with V RP shock
t+1 estimated using equation (21), and

var
[
V RP shock

t+1 |Ωt

]
is the conditional variance of V RP shock

t+1 which is constant in the cross-

section of equity portfolios.

Ang, Hodrick, Xing, and Zhang (2006) test whether the exposure of individual stocks to

changes in market volatility predicts cross-sectional variation in future stock returns. They

first estimate the exposure of individual stocks to changes in the S&P 100 index option

implied volatility (VXO). Then, they sort stocks into quintile portfolios based on these

implied volatility betas. They find a negative cross-sectional relation between the volatility

betas and future stock returns, that is, stocks with higher (lower) exposure to changes in the

VXO generate lower (higher) returns in the next month. Motivated by Ang et al. (2006),

we test whether the predictive power of V RP beta
i,t remains intact after controlling for the

exposure of equity portfolios to changes in aggregate stock market volatility.

In this section, following Ang et al. (2006), we use the VXO in the estimation of the

variance risk premia. We have so far used high-frequency (intraday) market returns to

estimate the expected physical variance that enters the VRP, but we use low frequency

returns on the market and equity portfolios to estimate the conditional covariances. To be

consistent with the estimation of market variance, VRP, and conditional covariances, in this

section, we define monthly realized variance of the market as the sum of squared daily returns

on the S&P500 index in a month. Then, we estimate the expected physical variance by

regressing one-month-ahead realized market variance on the lagged realized market variance

and VXO. Since the monthly data on VXO are available from January 1986, our results in

this section are based on the sample period January 1986 to December 2012.
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We start cross-sectional analysis by performing univariate portfolio sorts based on V RP beta
i,t .

Then, we present evidence from multivariate cross-sectional regressions with market beta,

V RP beta
i,t , and V XObeta

i,t .

Table 4 presents the average excess monthly returns of quintile portfolios that are formed

by sorting the 100 Size/BM portfolios based on their VRP-beta. Q1 (Low V RP beta) is the

quintile portfolio of Size/BM portfolios with the lowest VRP-beta during the past month,

and Q5 (High V RP beta) is the quintile portfolio of Size/BM portfolios with the highest

VRP-beta during the previous month. As shown in the first column of Table 4, the average

excess return increases from 0.02% per month to 0.70% per month as we move from Q1 to

Q5, generating an average return difference of 0.68% per month between Quintile 5 (High

V RP beta) and Quintile 1 (Low V RP beta). This return difference is statistically significant

with a Newey-West (1987) t-statistic of 4.33. In addition to the average excess returns, Table

4 also presents the intercepts (Fama-French three-factor alphas, denoted by FF3) from the

regression of the average excess portfolio returns on a constant, the excess market return, a

size factor (SMB), and a book-to-market factor (HML), following Fama and French (1993).

As shown in the last row of Table 4, the difference in FF3 alphas between the High V RP beta

and Low V RP beta portfolios is 0.69% per month with a Newey-West t-statistic of 4.99.

The last column of Table 4 presents the alpha of the return differential with respect to

a four-factor model, following Fama and French (1993) and Carhart (1997). Besides the

market, size, and book-to-market factors, it includes a fourth factor based on the return

differential between stocks in the highest and lowest momentum deciles. The reason for

including the fourth factor is to check whether the ability of V RP beta
i,t to predict returns

can be subsumed by the tendency of these equity portfolios to co-move with the momentum

factor.18 As shown in the last row of Table 4, the difference in Fama-French-Carhart four

factor alphas (denoted by FFC4) between the High V RP beta
i,t and Low V RP beta

i,t portfolios is

18SMB (small minus big), HML (high minus low), and MOM (winner minus loser) are described in and
obtained from Kenneth Frenchs data library: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/.
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0.68% per month with a Newey-West t-statistic of 4.09.

These results indicate that an investment strategy that goes long Size/BM portfolios in

the highest V RP beta
i,t quintile and shorts Size/BM portfolios in the lowest V RP beta

i,t quintile

produces average raw and risk-adjusted returns of 8.16% to 8.28% per annum. These return

and alpha differences are economically and statistically significant at all conventional levels.

To determine whether the cross-sectional predictive power of VRP-beta is driven by the

outperformance of High V RP beta portfolios and/or the underperformance of Low V RP beta

portfolios, we compute the FF3 and FFC4 alpha of each quintile portfolio. As reported in

Table 4, FF3 alpha of Q1 is -0.10% per month (t-stat. = -0.37) and FFC4 alpha of Q1 is

-0.01% per month (t-stat. = -0.02), presenting economically and statistically insignificant

risk-adjusted return of the short leg of the arbitrage portfolio with Low VRP-beta. When

we look at the long leg of the arbitrage portfolio with High VRP-beta, the FF3 alpha of

Q5 is 0.59% per month with a t-statistic of 2.67 and FFC4 alpha of Q5 is 0.67% per month

with a t-statistic of 2.97. These economically and statistically significant FF3 and FFC4

alphas indicate that the significantly positive link between VRP-beta and the cross-section

of portfolio returns is driven by the outperformance of individual stocks with High VRP-beta.

We now examine the cross-sectional relation between VRP-beta, Market-beta and ex-

pected returns using the Fama and MacBeth (1973) regressions. We calculate the time-

series averages of the slope coefficients from the regressions of one-month-ahead portfo-

lio returns on the conditional covariances of portfolios with the market and VRP factors,

Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
. The average slopes provide standard

Fama-MacBeth tests for determining whether the market and/or uncertainty factors on av-

erage have non-zero premiums. Monthly cross-sectional regressions are run for the following

asset pricing specification:

Ri,t+1 = λ0,t + λ1,t · Covt (Ri,t+1, Rm,t+1) + λ2,t · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

where Ri,t+1 is the excess return on portfolio i in month t+ 1, λ1,t and λ2,t are the monthly

29



slope coefficients on Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
, respectively. The

predictive cross-sectional regressions of Ri,t+1 are run on the time-t expected conditional

covariances of portfolios with the market and VRP factors.

Table 5 presents the time series averages of the slope coefficients (λ̄1, λ̄2) over the 324

months from January 1986 to December 2012 for the 100 Size/BM portfolios. The bi-

variate regression results produce a positive and statistically significant relation between

Covt

(
Ri,t+1, V RP

shock
t+1

)
and the cross-section of portfolios returns. The average slope, λ̄2,

is estimated to be 0.0250 with a Newey-West t-statistic of 2.94 for the 100 Size/BM portfo-

lios. We also find a significantly positive link between market beta and the cross-section of

expected returns. Specifically, the average slope, λ̄1, is found to be 3.38 with a t-statistic of

2.01 for the 100 Size/BM portfolios.

We now test whether significantly positive link between VRP-beta and expected returns

remains intact after controlling for the negative market volatility risk premium. For each

month from January 1986 to December 2012, we estimate the following cross-sectional re-

gression specification:

Ri,t+1 = λ0,t + λ1,t · Covt (Ri,t+1, Rm,t+1) + λ2,t · Covt
(
Ri,t+1, V RP

shock
t+1

)
)

+λ3,t · Covt
(
Ri,t+1, V XO

shock
t+1

)
+ εi,t+1

The second row in Table 5 reports the average slope coefficients (λ̄1, λ̄2, λ̄3) for the 100

Size/BM portfolios. Similar to our finding from the bivariate regression, λ̄2 is estimated to

be positive; λ̄2 = 0.0292 with a t-statistic of 3.61, implying a significantly positive uncertainty

premium. Consistent with Ang et al. (2006), the average slope on implied volatility beta,

Covt

(
Ri,t+1, V XO

shock
t+1

)
, is estimated to be negative; λ̄3 = −0.0163 with a t-statistic of

-1.87. Interestingly, the average slope on market beta, Covt (Ri,t+1, Rm,t+1), is estimated to

be positive but statistically insignificant; λ̄1 = 0.5099 with a t-statistic of 0.26. Overall, the

results in Table 5 indicate that after controlling for the positive market risk premium and the

negative market volatility risk premium, the positive link between VRP-beta and expected
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returns remains highly significant.

7 Conclusion

Although uncertainty is more common in decision-making process than risk, relatively little

attention is paid to the phenomenon of uncertainty in empirical asset pricing literature. This

paper focuses on economic uncertainty and augments the original consumption-based asset

pricing models to introduce a two-factor conditional asset pricing model with time-varying

market risk and uncertainty. According to the augmented asset pricing model, the premium

on equity is composed of two separate terms; the first term compensates for the market risk

and the second term representing a true premium for economic uncertainty. We use the

conditional asset pricing model to test whether the time-varying conditional covariances of

equity returns with the market and uncertainty factors predict their future returns.

Since information about economic uncertainty is too imprecise to measure with avail-

able data, we have to come up with a proxy for uncertainty that should be consistent with

the investment opportunity set of risk-averse investors. Following Zhou (2010), we measure

economic uncertainty with the variance risk premium (VRP) of the aggregate stock market

portfolio. Different from earlier studies, we provide empirical evidence that VRP is indeed

closely related to economic and financial market uncertainty. Specifically, we generate sev-

eral proxies for uncertainty based on the macroeconomic variables, return distributions of

financial firms, credit default swap market, and investors’ disagreement about individual

stocks. We show that VRP is highly correlated with all measures of uncertainty.

Based on the two-factor asset pricing model, we investigate whether the market prices of

risk and uncertainty are economically and statistically significant in the U.S. equity market.

Using the dynamic conditional correlation (DCC) model of Engle (2002), we estimate equity

portfolios’ conditional covariances with the market portfolio and VRP factors and then test

whether these dynamic conditional covariances predict future returns on equity portfolios.

31



The empirical results from the size, book-to-market, momentum, and industry portfolios

indicate that the DCC-based conditional covariances of equity portfolios with the market and

VRP factors predict the time-series and cross-sectional variation in stock returns. We find

the risk-return coefficients to be positive and highly significant, implying a strongly positive

link between expected return and market risk. Similarly, the results indicate a significantly

positive market price of uncertainty. That is, equity portfolios that are highly correlated

with uncertainty (proxied by VRP) carry a significant premium relative to portfolios that

are uncorrelated or minimally correlated with VRP. In addition to the size, book-to-market,

momentum and industry portfolios, we investigate the significance of risk, uncertainty, and

return tradeoffs using the largest 500 stocks trading at NYSE, AMEX, and NASDAQ as

well as stocks in the S&P 500 index. Consistent with our findings from equity portfolios, we

find significantly positive market prices of risk and uncertainty for large stocks trading in

the U.S. equity market.

We also examine whether the conditional covariances with VRP could be picking up

the covariances with market volatility, market illiquidity, and default risk. We find that

the significantly positive link between uncertainty and future returns remains intact after

controlling for market volatility, liquidity, and credit risk.

Finally, we investigate the cross-sectional asset pricing performance of our model using

the long-short equity portfolios and the Fama-MacBeth regressions. The results indicate

that the annual average raw and risk-adjusted returns of the equity portfolios in the highest

VRP-beta quintile are about 8 percent higher than the annual average returns of the equity

portfolios in the lowest VRP-beta quintile. After controlling for the market, size, book-

to-market, and momentum factors of Fama-French-Carhart, the positive relation between

VRP-beta and the cross-section of portfolio returns remains economically and statistically

significant. Overall, we conclude that the time-varying exposures of equity portfolios to the

variance risk premia predict the time-series and cross-sectional variation in stock returns.
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Table 1 Ten Decile Size, Book-to-Market, Momentum, and Industry Portfolios

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on portfolio i (Ri,t+1) and

the excess return on the market portfolio (Rm,t+1 ), Covt
(
Ri,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance

between the excess return on portfolio i and the shock to the variance risk premia (V RP shock
t+1 ), Covt

(
Rm,t+1, V RP shock

t+1

)
is the time-t expected conditional covariance between the excess return on the market portfolio m and the V RP shock

t+1 , and
V art (Rm,t+1) is the time-t expected conditional variance of excess returns on the market portfolio. The parameters and
their t-statistics are estimated using the monthly excess returns on the market portfolio and the ten decile size, book-to-
market,momentum, and industry portfolios for the sample period from January 1990 to December 2012. The alphas (αi) are
reported for each equity portfolio and the t-statistics are presented in parentheses. The t-statistics are adjusted for heteroskedas-
ticity and autocorrelation for each series and cross-correlations among the portfolios. The last four rows, respectively, show
the common slope coefficients (A and B), the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 ,
and the Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value vs.
Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square brackets.

Size αi, αm BM αi, αm MOM αi, αm Industry αi, αm

Small 0.0053 Growth 0.0039 Loser -0.0038 NoDur 0.0053

(1.32) (1.01) (-0.61) (2.05)

2 0.0041 2 0.0046 2 0.0012 Durbl 0.0020

(0.92) (1.39) (0.26) (0.40)

3 0.0047 3 0.0054 3 0.0024 Manuf 0.0051

(1.17) (1.67) (0.62) (1.48)

4 0.0037 4 0.0062 4 0.0038 Enrgy 0.0060

(0.96) (1.87) (1.15) (1.75)

5 0.0047 5 0.0057 5 0.0032 HiTec 0.0028

(1.24) (1.83) (1.04) (0.52)

6 0.0045 6 0.0050 6 0.0033 Telcm 0.0012

(1.28) (1.51) (1.13) (0.33)

7 0.0048 7 0.0059 7 0.0043 Shops 0.0039

(1.40) (1.92) (1.53) (1.17)

8 0.0042 8 0.0056 8 0.0056 Hlth 0.0047

(1.21) (1.80) (1.96) (1.57)

9 0.0042 9 0.0067 9 0.0039 Utils 0.0046

(1.31) (2.02) (1.28) (1.83)

Big 0.0021 Value 0.0078 Winner 0.0075 Other 0.0025

(0.70) (1.89) (1.74) (0.68)

Market 0.0026 Market 0.0042 Market 0.0032 Market 0.0026

(0.83) (1.25) (0.98) (0.77)

A 2.7712 A 2.5585 A 2.2345 A 3.4834

(2.83) (2.66) (2.08) (2.38)

B 0.0037 B 0.0059 B 0.0030 B 0.0062

(3.54) (2.58) (2.17) (2.85)

Wald1 16.40 Wald1 10.43 Wald1 22.15 Wald1 14.36

[12.69%] [49.22%] [2.33%] [21.37%]

Wald2 1.07 Wald2 1.68 Wald2 4.98 Wald2 0.20

[30.09%] [19.49%] [2.56%] [65.47%]38



Table 2 Results from Pooled Dataset

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel
regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on

portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt

(
Ri,t+1, V RP

shock
t+1

)
is the

time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance

risk premia (V RP shock
t+1 ), Covt

(
Rm,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance between

the excess return on the market portfolio m and V RP shock
t+1 , and V art (Rm,t+1) is the time-t expected

conditional variance of excess returns on the market portfolio. The parameters and their t-statistics are
estimated using the monthly excess returns on the market portfolio and the pooled dataset of ten decile size,
book-to-market, momentum, and industry portfolios (total of 40 equity portfolios) for the sample period from
January 1990 to December 2012. The t-statistics are adjusted for heteroskedasticity and autocorrelation for
each series and cross-correlations among the portfolios. Table show the common slope coefficients (A and
B), the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the Wald2

statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value
vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given
in square brackets.

A 3.1557

(5.39)

B 0.0037

(5.51)

Size Wald1 9.80

[45.83%]

Small vs. Big Wald2 1.06

[30.43%]

Book-to-Market Wald1 4.93

[89.56%]

Value vs. Growth Wald2 0.89

[34.55%]

Momentum Wald1 19.28

[3.69%]

Winner vs. Loser Wald2 5.50

[1.91%]

Industry Wald1 11.27

[33.65%]

HiTec vs. Telcm Wald2 0.31

[57.99%]
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Table 3 Results from the Change in the Variance Risk Premia

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel
regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt (Ri,t+1,∆V RPt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt (Rm,t+1,∆V RPt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on
portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt (Ri,t+1,∆V RPt+1) is the
time-t expected conditional covariance between the excess return on portfolio i and the change in the variance
risk premia (∆V RPt+1), Covt (Rm,t+1,∆V RPt+1) is the time-t expected conditional covariance between the
excess return on the market portfolio m and ∆V RPt+1, and V art (Rm,t+1) is the time-t expected conditional
variance of excess returns on the market portfolio. The parameters and their t-statistics are estimated using
the monthly excess returns on the market portfolio and the pooled dataset of ten decile size, book-to-market,
momentum, and industry portfolios (total of 40 equity portfolios) for the sample period from January 1990
to December 2012. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series
and cross-correlations among the portfolios. Table show the common slope coefficients (A and B), the Wald1

statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from testing
the equality of Alphas for high-return and low-return portfolios (Small vs. Big; Value vs. Growth; Winner
vs. Loser; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square brackets.

A 3.0347

(4.65)

B 0.0039

(3.41)

Size Wald1 6.70

[75.36%]

Small vs. Big Wald2 0.44

[50.67%]

Book-to-Market Wald1 4.36

[92.94%]

Value vs. Growth Wald2 0.55

[45.80%]

Momentum Wald1 21.45

[1.82%]

Winner vs. Loser Wald2 5.33

[2.09%]

Industry Wald1 11.27

[33.71%]

HiTec vs. Telcm Wald2 0.20

[65.42%]
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Table 4 Long-Short Equity Portfolios Sorted by VRP-beta

Quintile portfolios are formed every month from January 1990 to December 2012 by sorting 100 Size/BM
portfolios based on their VRP-beta (V RP beta) over the past one month. Quintile 1 (Q1) is the portfolio
of Size/BM portfolios with the lowest V RP beta over the past one month. Quintile 5 (Q5) is the portfolio
of Size/BM portfolios with the highest V RP beta over the past one month. The table reports the average
excess monthly returns, the 3-factor Fama-French alphas (FF3 alpha), and the 4-factor Fama-French-Carhart
alphas (FFC4 alpha) on the VRP-beta sorted portfolios. The last row presents the differences in monthly
returns and the differences in alphas with respect to the 3-factor and 4-factor models between Quintiles 5 and
1 and the corresponding t-statistics. Average excess returns and risk-adjusted returns are given in monthly
percentage terms. Newey-West (1987) t-statistics are reported in parentheses.

Average Excess Return FF3 Alpha FFC4 Alpha

Q1 0.02 -0.10 -0.01

(0.06) (-0.37) (-0.02)

Q2 0.35 0.25 0.32

(1.34) (1.03) (1.25)

Q3 0.45 0.34 0.41

(1.77) (1.42) (1.66)

Q4 0.53 0.41 0.48

(2.12) (1.79) (2.02)

Q5 0.70 0.59 0.67

(2.94) (2.67) (2.97)

High-Low 0.68 0.69 0.68

(4.33) (4.99) (4.09)
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Figure 1 Variance Risk Premium Level and Change

This figure plots variance risk premium or the implied-expected variance difference (top panel) and the

monthly change of variance risk premium change (bottom panel) for the S&P500 market index from January

1990 to December 2012. The variance risk premium is based on the realized variance forecast from lagged

implied and realized variances. The shaded areas represent NBER recessions.
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Figure 2 Variance Risk Premium and GDP Growth

The figure plots the growth rate of real GDP per capita (thin line) together with the variance risk premium

(thick line) from January 1990 to December 2012. Both of the series are standardized to have mean zero

and variance one. The shaded areas represent NBER recessions.
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Risk, Uncertainty, and Expected
Returns—Internet Appendix



A Variance Risk Premium and Empirical Measurement

The central empirical variable of this paper, as a proxy for economic uncertainty, is the

market variance risk premium (VRP)—which is not directly observable but can be esti-

mated from the difference between model-free option-implied variance and the conditional

expectation of realized variance.

A.1 Variance Risk Premium: Definition and Measurement

In order to define the model-free implied variance, let Ct(T,K) denote the price of a European

call option maturing at time T with strike price K, and B(t, T ) denote the price of a time

t zero-coupon bond maturing at time T . As shown by Carr and Madan (1998) and Britten-

Jones and Neuberger (2000), among others, the market’s risk-neutral Q expectation of the

return variance σ2
t+1 conditional on the information set Ωt, or the implied variance IVt at

time-t, can be expressed in a “model-free” fashion as a portfolio of European calls,

IVt ≡ EQ
[
σ2
t+1|Ωt

]
= 2

∫ ∞
0

Ct

(
t+ 1, K

B(t,t+1)

)
− Ct (t,K)

K2
dK, (A1)

which relies on an ever increasing number of calls with strikes spanning from zero to infinity.1

This equation follows directly from the classical result in Breeden and Litzenberger (1978),

that the second derivative of the option call price with respect to strike equals the risk-

neutral density, such that all risk neutral moments payoff can be replicated by the basic

option prices (Bakshi and Madan, 2000).

In order to define the actual return variance, let pt denote the logarithmic price of the

asset. The realized variance over the discrete t to t + 1 time interval can be measured in a

“model-free” fashion by

RVt+1 ≡
n∑
j=1

[
pt+ j

n
− pt+ j−1

n

]2

−→ σ2
t+1, (A2)

where the convergence relies on n → ∞; i.e., an increasing number of within period price

observations. As demonstrated in the literature (see, e.g., Andersen, Bollerslev, Diebold,

1Such a characterization is accurate up to the second order when there are jumps in the underlying asset
(Jiang and Tian, 2005; Carr and Wu, 2009), though Martin (2011) has refined the above formulation to
make it robust to jumps.
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and Ebens, 2001; Barndorff-Nielsen and Shephard, 2002), this “model-free” realized vari-

ance measure based on high-frequency intraday data offers a much more accurate ex-post

observation of the true (unobserved) return variance than the traditional ones based on daily

or coarser frequency returns.

Variance risk premium (VRP) at time t is defined as the difference between the ex-ante

risk-neutral expectation and the objective or statistical expectation at time t of the return

variance at time t+ 1,

V RPt ≡ EQ
[
σ2
t+1|Ωt

]
− EP

[
σ2
t+1|Ωt

]
, (A3)

which is not directly observable in practice.2 To construct an empirical proxy for such a

VRP concept, one needs to estimate various reduced-form counterparts of the risk neutral

and physical expectations. In practice, the risk-neutral expectation EQ
[
σ2
t+1|Ωt

]
is typically

replaced by the CBOE implied variance (VIX2/12) and the true variance σ2
t+1 is replaced by

realized variance RVt+1.

To estimate the objective expectation, EP
[
σ2
t+1|Ωt

]
, we use a linear forecast of future

realized variance as RVt+1 = α + βIVt + γRVt + εt+1, with current implied and realized

variances. The model-free implied variance from options market is an informationally more

efficient forecast for future realized variance than the past realized variance (see, e.g., Jiang

and Tian, 2005, among others), while realized variance based on high-frequency data also pro-

vides additional power in forecasting future realized variance (Andersen, Bollerslev, Diebold,

and Labys, 2003). Therefore, a joint forecast model with one lag of implied variance and

one lag of realized variance seems to capture the most forecasting power based on time-t

available information (Drechsler and Yaron, 2011).

B DCC Model of Engle (2002)

We estimate the conditional covariances of each equity portfolio with the market portfolio

and V RP (σim,t+1 , σi,V RP,t+1 ) based on the mean-reverting DCC model of Engle (2002).

2The difference between option implied and GARCH type filtered volatilities has been associated in
existing literature with notions of aggregate market risk aversion (Rosenberg and Engle, 2002; Bakshi and
Madan, 2006; Bollerslev, Gibson, and Zhou, 2011).
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Engle defines the conditional correlation between two random variables r1 and r2 that each

has zero mean as

ρ12,t =
Et−1 (r1,t · r2,t)√

Et−1

(
r2

1,t

)
· Et−1

(
r2

1,t

) , (A4)

where the returns are defined as the conditional standard deviation times the standardized

disturbance:

σ2
i,t = Et−1

(
r2
i,t

)
, ri,t = σi,t · ui,t, i = 1, 2 (A5)

where ui,t is a standardized disturbance that has zero mean and variance one for each series.

Equations (A4) and (A5) indicate that the conditional correlation is also the conditional

covariance between the standardized disturbances:

ρ12,t =
Et−1 (u1,t · u2,t)√

Et−1

(
u2

1,t

)
· Et−1

(
u2

1,t

) = Et−1 (u1,t · u2,t) . (A6)

The conditional covariance matrix of returns is defined as

Ht = Dt · ρt ·Dt, where Dt = diag
{√

σ2
i,t

}
, (A7)

where ρt is the time-varying conditional correlation matrix

Et−1 (ut · u′t) = D−1
t ·Ht ·D−1

t = ρt, where ut = D−1
t · rt. (A8)

Engle (2002) introduces a mean-reverting DCC model:

ρij,t =
qij,t√

qii,t · qjj,t
, (A9)

qij,t = ρ̄ij + a1 · (ui,t−1 · uj,t−1 − ρ̄ij) + a2 · (qij,t−1 − ρ̄ij) (A10)

where ρ̄ij is the unconditional correlation between ui,t and uj,t. Equation (A10) indicates

that the conditional correlation is mean reverting towards ρ̄ij as long as a1 + a2 < 1.

Engle (2002) assumes that each asset follows a univariate GARCH process and writes

the log likelihood function as:

L = −1

2

T∑
t=1

(
n log(2π) + log |Ht|+ r′tH

−1
t rt

)
= −1

2

T∑
t=1

(
n log(2π) + 2 log |Dt|+ r′tD

−1
t D−1

t rt − u′tut + log |ρt|+ u′tρ
−1
t ut

)
. (A11)
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As shown in Engle (2002), letting the parameters in Dt be denoted by θ and the additional

parameters in ρt be denoted by ϕ, equation (A11) can be written as the sum of a volatility

part and a correlation part:

L(θ, ϕ) = LV (θ) + LC(θ, ϕ). (A12)

The volatility term is

LV (θ) = −1

2

T∑
t=1

(
n log(2π) + log |Dt|2 + r′tD

−2
t rt

)
, (A13)

and the correlation component is

LC(θ, ϕ) = −1

2

T∑
t=1

(
log |ρt|+ u′tρ

−1
t ut − u′tut

)
. (A14)

The volatility part of the likelihood is the sum of individual GARCH likelihoods:

LV (θ) = −1

2

T∑
t=1

n∑
i=1

(
log(2π) + log

(
σ2
i,t

)
+
r2
i,t

σ2
i,t

)
, (A15)

which is jointly maximized by separately maximizing each term. The second part of the like-

lihood is used to estimate the correlation parameters. The two-step approach to maximizing

the likelihood is to find

θ̂ = arg max{LV (θ)}, (A16)

and then take this value as given in the second stage:

ϕ̂ = arg max{LC(θ̂, ϕ)}. (A17)

C System of Regression Equations

Consider a system of n equations, of which the typical ith equation is

yi = Xiβi + ui, (A18)

where yi is a N × 1 vector of time-series observations on the ith dependent variable, Xi is a

N × ki matrix of observations of ki independent variables, βi is a ki × 1 vector of unknown

5



coefficients to be estimated, and ui is a N×1 vector of random disturbance terms with mean

zero. Parks (1967) proposes an estimation procedure that allows the error term to be both

serially and cross-sectionally correlated. In particular, he assumes that the elements of the

disturbance vector u follow an AR(1) process:

uit = ρuit−1 + εit; ρi < 1, (A19)

where εit is serially independently but contemporaneously correlated:

Cov (εitεjt) = σij, for any i, j, and Cov (εitεjs) = 0, for s 6= t (A20)

Equation (A18) can then be written as

yi = Xiβi + Piui, (A21)

with

Pi =



(1− ρ2
i )
−1/2

0 0 ... 0

ρi (1− ρ2
i )
−1/2

1 0 ... 0

ρ2
i (1− ρ2

i )
−1/2

ρ 1 ... 0
.
.
.

ρN−1
i (1− ρ2

i )
−1/2

ρN−2 ρN−3 ... 1


. (A22)

Under this setup, Parks (1967) presents a consistent and asymptotically efficient three-

step estimation technique for the regression coefficients. The first step uses single equation

regressions to estimate the parameters of autoregressive model. The second step uses single

equation regressions on transformed equations to estimate the contemporaneous covariances.

Finally, the Aitken estimator is formed using the estimated covariance,

β̂ =
(
XTΩ−1X

)−1
XTΩ−1y, (A23)

where Ω ≡ E[uuT ] denotes the general covariance matrix of the innovation. In our applica-

tion, we use the aforementioned methodology with the slope coefficients restricted to be the

same for all equity portfolios and individual stocks. In particular, we use the same three-step

6



procedure and the same covariance assumptions as in equations (A19) to (A22) to estimate

the covariances and to generate the t-statistics for the parameter estimates.

In a typical panel data setting of several cross-sectional observations observed for certain

period of time, OLS standard errors, which assume spherical variance-covariance matrix of

the panel of errors, are inefficient due to both heteroscedasticity and cross-sectional correla-

tions among the error terms. In other words, assuming that the errors in panel regression are

cross-sectionally uncorrelated (as in the case of the OLS) can yield standard errors that are

biased downwards. This bias is due to the fact that error correlations are often systemati-

cally related to the explanatory variables. To solve this problem, in addition to Parks (1967)

methodology discussed above, we also used Rogers (1983, 1993) robust standard errors (the

so-called clustered standard errors) that yield asymptotically correct standard errors for the

OLS estimators under a general cross-correlation structure.

Assuming that the errors are independent across cross-sections, Rogers (1983, 1993) write

the variance-covariance matrix of the coefficient estimates as (X ′X)−1∑T
t=1 [X ′tΩtXt] (X ′X)−1,

where X is the panel of explanatory variables, Ω is the covariance matrix of the panel of

errors, and Xt and Ωt denote a single cross-section of explanatory variables and the cor-

responding error covariance matrix, respectively. Since X ′tΩtXt = E [X ′tete
′
tXt], Rogers

substitutes estimated errors for true errors to get a variance estimator of regression coeffi-

cients: (X ′X)−1∑T
t=1 [X ′têtêtXt] (X ′X)−1 , where et denotes the regression errors and êt is

the estimated errors. Rogers shows that the standard errors are consistent in T .

We should note that the results from clustered standard errors are qualitatively very

similar to those reported in the paper. However, we chose to present standard errors from

Parks methodology because we do not have a large number of cross-sectional observations and

we use returns on equity portfolios that are serially correlated. Rogers (1983, 1993) clustered

standard errors take into account heteroscedasticity and cross-sectional correlations among

the error terms, but do not account for serial correlation. Since monthly equity portfolio

returns are serially correlated, we think that in our setting Parks methodology is more

appropriate.3

3Researchers in corporate finance and asset pricing literatures have used different solutions to fix the
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D Robustness Check

In this section, we provide a battery of robustness checks.

D.1 Results from the Generalized Conditional Covariance Model

There appears to be some controversy in the econometrics literature around the consistency

of QMLE parameter estimates generated by the DCC models.4 One may wonder if the lack of

consistency in the DCC models affects our main findings. To address this potential concern,

we use an alternative econometric methodology and estimate the conditional covariances

between excess returns on asset i and the market portfolio m based on the generalized

conditional covariance (GCC) specification of Bali (2008):5

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

Rm,t+1 = αm0 + αm1 Rm,t + εm,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t

Et
[
ε2
m,t+1

]
≡ σ2

m,t+1 = βm0 + βm1 ε
2
m,t + βm2 σ

2
m,t

Et [εi,t+1εm,t+1] ≡ σim,t+1 = βim0 + βim1 εi,tεm,t + βim2 σim,t

(A24)

where Ri,t+1 and Rm,t+1 denote the time (t + 1) excess return on asset i and the market

portfolio m over a risk-free rate, respectively, and Et[·] denotes the expectation operator

conditional on time t information. In the last equation above, one-month-ahead conditional

covariance, σim,t+1, is defined as a function of the last month’s conditional covariance, σim,t,

and the product of the last month’s unexpected shocks to asset i and the market portfolio

m (εi,tεm,t).

We estimate the conditional covariances between the excess return on each equity port-

folio i and the innovation in the variance risk premia V RP , σi,V RP , using an analogous GCC

problem of correlated residuals across firms or across time in a panel data setting. Petersen (2009) examines
different methods used in the two literatures and explains when the different methods yield the same (and
correct) standard errors and when they diverge.

4See Aielli (2013), Caporin and McAleer (2013), and the proposed solution in Noureldin, Shephard, and
Sheppard (2014).

5Following the findings of Lee and Hansen (1994), Lumsdaine (1996), and Straumann and Mikosch (2003),
Francq and Zakoian (2004) provide consistency and asymptotic normality of the maximum likelihood esti-
mator of the parameters of GCC-type GARCH processes.
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model:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

V RPt+1 = αV RP0 + αV RP1 V RPt + εV RP,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t

Et
[
ε2
V RP,t+1

]
≡ σ2

V RP,t+1 = βV RP0 + βV RP1 ε2
V RP,t + βV RP2 σ2

V RP,t

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = βi,V RP0 + βi,V RP1 εi,tεV RP,t + βi,V RP2 σi,V RP,t

(A25)

We estimate the conditional covariances of each equity portfolio with the market portfolio

and with the variance risk premia using the maximum likelihood method described in Bali

(2008). Once we generate the conditional covariances, we estimate the system of equations

given in equations (23)-(24) of the main text using the SUR methodology described in Section

C of the internet appendix.

Table II of the internet appendix reports the parameter estimates and the t-statistics of

the system of equations for the 10 size, 10 book-to-market, 10 momentum, and 10 industry

portfolios (total of 40 portfolios) for the sample period January 1990 to December 2012. As

shown in the first two rows of Table II, the risk aversion and the uncertainty aversion coef-

ficients are estimated to be positive and highly significant for the pooled dataset: A = 2.86

with a t-statistic of 4.78 and B = 0.0026 with a t-statistic of 4.50, indicating a significantly

positive market price of risk and uncertainty. Similar to our earlier findings from the DCC

model, the Wald1 and Wald2 statistics reported in Table II indicate that the two-factor

model with risk and uncertainty provides both statistical and economic success in explaining

stock market anomalies, except momentum.

D.2 DCC with Asymmetric GARCH

Because the conditional variance and covariance of stock market returns are not observable,

different approaches and specifications used in estimating the conditional variance and co-

variance could lead to different conclusions. We have so far used the bivariate GARCH(1,1)

model of Bollerslev (1986) in equations (13)-(14) and (19)-(20) to obtain conditional variance

and covariance estimates. In this section, we investigate whether changing these specifica-

tions influences our main findings.

The current volatility in the GARCH(1,1) model is defined as a symmetric, linear function

of the last period’s unexpected news and the last period’s volatility. Since, in a symmetric
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GARCH process, positive and negative information shocks of the same magnitude produce

the same amount of volatility, the symmetric GARCH model cannot cope with the skewness

of stock return distribution. If a negative return shock causes more volatility than a positive

return shock of the same size, the symmetric GARCH model underpredicts the amount

of volatility following negative shocks and overpredicts the amount of volatility following

positive shocks. Furthermore, if large return shocks cause more volatility than a quadratic

function allows, then the symmetric GARCH model underpredicts volatility after a large

return shock and overpredicts volatility after a small return shock.

In this section we use an asymmetric GARCH model of Glosten, Jagannathan, and

Runkle (1993) that explicitly takes account of skewed distributions and allows good news

and bad news to have different impacts on the conditional volatility forecasts. To test whether

such variations in the variance forecasting specification alter our conclusion, we re-estimate

the DCC-based conditional covariances using the following alternative specification:

Ri,t+1 = αi0 + αi1Ri,t + εi,t+1

Rm,t+1 = αm0 + αm1 Rm,t + εm,t+1

V RPt+1 = αV RP0 + αV RP1 V RPt + εV RP,t+1

Et
[
ε2
i,t+1

]
≡ σ2

i,t+1 = βi0 + βi1ε
2
i,t + βi2σ

2
i,t + βi3ε

2
i,tD

−
i,t

Et
[
ε2
m,t+1

]
≡ σ2

m,t+1 = βm0 + βm1 ε
2
m,t + βm2 σ

2
m,t + βm3 ε

2
m,tD

−
m,t

Et
[
ε2
V RP,t+1

]
≡ σ2

V RP,t+1 = βV RP0 + βV RP1 ε2
V RP,t + βV RP2 σ2

V RP,t + βV RP3 ε2
V RP,tD

−
V RP,t

Et [εi,t+1εm,t+1] ≡ σim,t+1 = ρim,t+1 · σi,t+1 · σm,t+1

Et [εi,t+1εV RP,t+1] ≡ σi,V RP,t+1 = ρi,V RP,t+1 · σi,t+1 · σV RP,t+1

Et [εm,t+1εV RP,t+1] ≡ σm,V RP,t+1 = ρm,V RP,t+1 · σm,t+1 · σV RP,t+1

(A26)

where D−i,t, D
−
m,t, and D−V RP,t are indicator functions that equals one when εi,t+1, εm,t+1, and

εV RP,t+1 are negative and zero otherwise. The indicator function generates an asymmetric

GARCH effect between positive and negative shocks. ρim,t+1, ρi,V RP,t+1, and ρm,V RP,t+1 are

the time-t expected conditional correlations estimated using the mean-reverting DCC model

of Engle (2002).

A notable point in Table III is that the main findings from an asymmetric GARCH

specification of the conditional covariances are very similar to those reported in Table 1.

Specifically, the risk aversion coefficients are estimated to be positive and highly significant

for all equity portfolios; A is in the range of 2.53 to 3.54 with the t-statistics ranging from

2.58 to 3.11, implying a significantly positive link between expected return and risk. Sim-
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ilar to our results from GARCH(1,1) specification, asymmetric GARCH model of Glosten,

Jagannathan, and Runkle (1993) yields positive and significant coefficient estimates on the

covariance between equity portfolios and the variance risk premia. Specifically, the uncer-

tainty aversion coefficients (B) are in the range of 0.0054 to 0.0075 with the t-statistics

between 2.68 and 3.30. These results show that equity portfolios that are highly correlated

with uncertainty (proxied by VRP) carry a significant premium relative to portfolios that

are uncorrelated or lowly correlated with VRP.

With this alternative covariance specification, we also examine the empirical validity of

the conditional asset pricing model by testing the joint hypothesis. As shown in Table III,

the Wald1 statistics for the size, book-to-market, and industry portfolios are, respectively,

16.91, 7.89, and 14.41 with the corresponding p-values of 0.11, 0.72, and 0.21. The signifi-

cantly positive risk and uncertainty aversion coefficients and the insignificant Wald1 statistics

indicate that the two-factor model explains the time-series and cross-sectional variation in

equity portfolios. Finally, we investigate whether the model with asymmetric GARCH spec-

ification explains the return spreads between Small and Big; Value and Growth; and HiTec

and Telcm portfolios. The last row in Table III reports Wald2 statistics from testing the

equality of conditional alphas for high-return and low-return portfolios (H0 : α1 = α10). For

the size, book-to-market, and industry portfolios, the Wald2 statistics provide no evidence

for a significant conditional alpha for “Small-Big”, “Value-Growth”, and “HiTec-Telcm”

arbitrage portfolios. Overall, the DCC-based conditional covariances from the asymmet-

ric GARCH model captures the time-series and cross-sectional variation in returns on size,

book-to-market, and industry portfolios and generates significantly positive risk-return and

uncertainty-return tradeoffs.

D.3 Results from Larger Cross-Section of Industry Portfolios

Given the positive risk-return and positive uncertainty-return coefficient estimates from the

three data sets and the success of the conditional asset pricing model in explaining the

industry, size, and value premia, we now examine how the model performs when we use a

larger cross-section of equity portfolios.
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The robustness of our findings is investigated using the monthly excess returns on the

value-weighted 17-, 30-, 38-, 48-, and 49-industry portfolios. Table IV reports the common

slope estimates (A, B), their t-statistics in parentheses, and the Wald1 and Wald2 statistics

along with their p-values in square brackets. For the industry portfolios, the risk aversion

coefficients (A) are estimated to be positive, in the range of 2.20 to 2.78, and highly significant

with the t-statistics ranging from 2.31 to 3.34. Consistent with our earlier findings from the

10 size, 10 book-to-market, and 10 industry portfolios, the results from the larger cross-

section of industry portfolios (17 to 49) imply a positive and significant relation between

expected return and market risk. Again similar to our findings from 10 decile portfolios,

the uncertainty aversion coefficients are estimated to be positive, in the range of 0.0036 to

0.0041, and highly significant with the t-statistics ranging from 2.44 to 4.21. These results

provide evidence for a significantly positive market price of uncertainty and show that assets

with higher correlation with the variance risk premia generate higher returns next month.

Not surprisingly, the Wald1 statistics for all industry portfolios have p-values in the range

of 0.20 to 0.75, indicating that the two-factor asset pricing model explains the time-series

and cross-sectional variation in larger number of equity portfolios. The last row shows that

the Wald2 statistics from testing the equality of conditional alphas on the high-return and

low-return industry portfolios have p-values ranging from 0.44 to 0.80, implying that there

is no significant risk-adjusted return difference between the extreme portfolios of 17, 30,

38, 48, and 49 industries. The differences in conditional alphas are both economically and

statistically insignificant, showing that the two-factor model introduced in the paper provides

success in explaining industry effects.

D.4 Controlling for Macroeconomic Variables

A series of papers argue that the stock market can be predicted by financial and/or macroeco-

nomic variables associated with business cycle fluctuations. The commonly chosen variables

include default spread (DEF), term spread (TERM), dividend price ratio (DIV), and the
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de-trended riskless rate or the relative T-bill rate (RREL).6 We define DEF as the difference

between the yields on BAA- and AAA-rated corporate bonds, and TERM as the difference

between the yields on the 10-year Treasury bond and the 3-month Treasury bill. RREL is

defined as the difference between 3-month T-bill rate and its 12-month backward moving

average.7 We obtain the aggregate dividend yield using the CRSP value-weighted index re-

turn with and without dividends based on the formula given in Fama and French (1988). In

addition to these financial variables, we use some fundamental variables affecting the state

of the U.S. economy: Monthly inflation rate based on the U.S. Consumer Price Index (INF);

Monthly growth rate of the U.S. industrial production (IP) obtained from the G.17 database

of the Federal Reserve Board; and Monthly US unemployment rate (UNEMP) obtained from

the Bureau of Labor Statistics.

According to Merton’s (1973) ICAPM, state variables that are correlated with changes

in consumption and investment opportunities are priced in capital markets in the sense that

an asset’s covariance with those state variables affects its expected returns. Merton (1973)

also indicates that securities affected by such state variables (or systematic risk factors)

should earn risk premia in a risk-averse economy. Macroeconomic variables used in the

literature are excellent candidates for these systematic risk factors because innovations in

macroeconomic variables can generate global impact on firm’s fundamentals, such as their

cash flows, risk-adjusted discount factors, and/or investment opportunities. Following the

existing literature, we use the aforementioned financial and macroeconomic variables as

proxies for state variables capturing shifts in the investment opportunity set.

We now investigate whether incorporating these variables into the predictive regressions

affects the significance of the market prices of risk and uncertainty. Specifically, we estimate

the portfolio-specific intercepts and the common slope coefficients from the following panel

6See, e.g., Campbell (1987), Fama and French (1989), and Ferson and Harvey (1991) who test the
predictive power of these variables for expected stock returns.

7The monthly data on 10-year T-bond yields, 3-month T-bill rates, BAA- and AAA-rated corporate bond
yields are available from the Federal Reserve statistics release website.
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regression:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ λ ·Xt + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread

(TERM), relative T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF),

growth rate of industrial production (IP), and unemployment rate (UNEMP). The common

slope coefficients (A, B, and λ) and their t-statistics are estimated using the monthly excess

returns on the market portfolio and the ten size, book-to-market, and industry portfolios.

As presented in Table V, after controlling for a wide variety of financial and macroe-

conomic variables, our main findings remain intact for all equity portfolios. The common

slope estimates on the conditional covariances of equity portfolios with the market factor

(A) remain positive and highly significant, indicating a positive and significant relation be-

tween expected return and market risk. Similar to our earlier findings, the common slopes

on the conditional covariances of equity portfolios with the uncertainty factor (B) remain

significantly positive as well, showing that assets with higher correlation with the variance

risk premium generate higher returns next month. Among the control variables, the growth

rate of industrial production is the only variable predicting future returns on equity port-

folios; λIP turns out to be positive and significant—especially for the industry portfolios.

The positive relation between expected stock returns and innovations in output makes eco-

nomic sense. Increases in real economic activity (proxied by the growth rate of industrial

production) increase investors’ expectations of future growth. Overall, the results in Table

V indicate that after controlling for variables associated with business conditions, the time-

varying exposures of equity portfolios to the market and uncertainty factors carry positive

risk premiums.8

8We also used “expected business conditions” variable of Campbell and Diebold (2009) and our main
findings remain intact for all equity portfolios. To save space, we do not report these results in the paper.
They are available upon request.
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D.5 Results from Individual Stocks

We have so far investigated the significance of risk, uncertainty, and return tradeoffs using

equity portfolios. In this section, we replicate our analyses using individual stocks trading at

NYSE, AMEX, and NASDAQ. First, we generate a dataset for the largest 500 common stocks

(share code = 10 or 11) traded at NYSE/AMEX/NASDAQ. Following Shumway (1997), we

adjust for stock de-listing to avoid survivorship bias.9 Firms with missing observations on

beginning-of-month market cap or monthly returns over the period January 1990 – December

2010 are eliminated. Due to the fact that the list of 500 firms changes over time as a result

of changes in firms’ market capitalizations, we obtain more than 500 firms over the period

1990-2010. Specifically, the largest 500 firms are determined based on their end-of-month

market cap as of the end of each month from January 1990 to December 2010. There are 738

unique firms in our first dataset. In our second dataset, the largest 500 firms are determined

based on their market cap at the end of December 2010. Our last dataset contains stocks in

the S&P 500 index. Since the stock composition of the S&P 500 index changes through time,

we rely on the most recent sample (as of December 2010). We also restrict our S&P 500

sample to 318 stocks with non-missing monthly return observations for the period January

1990 – December 2010.

Table VI presents the common slope estimates (A, B) and their t-statistics for the indi-

vidual stocks in the aforementioned data sets. The risk aversion coefficient is estimated to

be positive and highly significant for all stock samples considered in the paper: A = 6.42

with the t-statistic of 8.04 for the first dataset containing 738 stocks (largest 500 stocks as of

the end of each month from January 1990 to December 2010); A = 6.80 with the t-statistic

of 8.70 for the second dataset containing largest 500 stocks as of the end of December 2010;

and A = 6.02 with the t-statistic of 6.79 for the last dataset containing 318 stocks with

non-missing monthly return observations for the period 1990-2010. Confirming our findings

9Specifically, the last return on an individual stock used is either the last return available on CRSP, or the
de-listing return, if available. Otherwise, a de-listing return of -100% is included in the study, except that
the deletion reason is coded as 500 (reason unavailable), 520 (went to OTC), 551-573, 580 (various reason),
574 (bankruptcy), and 584 (does not meet exchange financial guidelines). For these observations, a return
of -30% is assigned.
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from equity portfolios, the results from individual stocks imply a positive and significant

relation between expected return and market risk. Similarly, consistent with our earlier

findings from equity portfolios, the uncertainty aversion coefficient is also estimated to be

positive and highly significant for all data sets: B = 0.0043 with the t-statistic of 3.61 for the

first dataset, B = 0.0044 with the t-statistic of 3.67 for the second dataset, and B = 0.0046

with the t-statistic of 3.52 for the last dataset. These results indicate a significantly positive

market price of uncertainty for large stocks trading in the U.S. stock market.

D.6 Controlling for Market Illiquidity and Default Risk

Elevated variance risk premia during economic recessions and market downturns often corre-

spond to the periods in which market illiquidity and default risk are both higher. Thus, it is

natural to think that the conditional covariances of equity portfolios with market illiquidity

and credit risk factors are positively linked to expected returns. In this section, we test

whether the covariances with V RP shock
t+1 could be picking up covariances with illiquidity

and default risk.

Following Amihud (2002), we measure market illiquidity in a month as the average daily

ratio of the absolute market return to the dollar trading volume within the month:

ILLIQt =
1

n

n∑
d=1

|Rm,d|
V OLDm

where Rm,d and V OLDm,d are, respectively, the daily return and daily dollar trading volume

for the S&P 500 index on day d, and n is the number of trading days in month t.

First, we generate the DCC-based conditional covariances of portfolio returns with market

illiquidity and then estimate the common slope coefficients (A, B1, B2) from the following

panel regressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) + εm,t+1
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where Covt (Ri,t+1,∆ILLIQt+1) and Covt (Rm,t+1,∆ILLIQt+1) are the time-t expected con-

ditional covariance between the change in market illiquidity and the excess return on portfolio

i and market portfolio m, respectively.

Table VII, Panel A, presents the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the 10 size, book-to-market,

and industry portfolios. The slope on Covt (Ri,t+1,∆ILLIQt+1) is found to be positive but

statistically insignificant for all equity portfolios considered in the paper. A notable point

in Table VII is that the slopes on Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
remain

positive and highly significant after controlling for the covariances of equity portfolios with

market illiquidity.

Next, we test whether the variance risk premium is proxying for default or credit risk.

We use the TED spread as an indicator of credit risk and the perceived health of the banking

system. The TED spread is the difference between the interest rates on interbank loans and

short-term U.S. government debt (T-bills). TED is an acronym formed from T-Bill and ED,

the ticker symbol for the Eurodollar futures contract.10 The size of the spread is usually

denominated in basis points (bps). For example, if the T-bill rate is 5.10% and ED trades at

5.50%, the TED spread is 40 bps. The TED spread fluctuates over time but generally has

remained within the range of 10 and 50 bps (0.1% and 0.5%) except in times of financial crisis.

A rising TED spread often presages a downturn in the U.S. stock market, as it indicates that

liquidity is being withdrawn. The TED spread is an indicator of perceived credit risk in the

general economy. This is because T-bills are considered risk-free while LIBOR reflects the

credit risk of lending to commercial banks. When the TED spread increases, that is a sign

that lenders believe the risk of default on interbank loans (also known as counterparty risk)

is increasing. Interbank lenders therefore demand a higher rate of interest, or accept lower

returns on safe investments such as T-bills. When the risk of bank defaults is considered to

be decreasing, the TED spread decreases.

10Initially, the TED spread was the difference between the interest rates for three-month U.S. Treasuries
contracts and the three-month Eurodollars contract as represented by the London Interbank Offered Rate
(LIBOR). However, since the Chicago Mercantile Exchange dropped T-bill futures, the TED spread is now
calculated as the difference between the three-month T-bill interest rate and three-month LIBOR.
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We first estimate the DCC-based conditional covariances of portfolio returns with the

TED spread and then estimate the common slope coefficients from the following SUR re-

gressions:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1,∆TEDt+1) and Covt (Rm,t+1,∆TEDt+1) are the time-t expected condi-

tional covariance between the changes in TED spread and the excess returns on portfolio i

and market portfolio m, respectively.

Table VII, Panel A, shows the common slope coefficients and their t-statistics estimated

using the monthly excess returns on the market portfolio and the size, book-to-market, and

industry portfolios. The slope on Covt (Ri,t+1,∆TEDt+1) is found to be positive for the size

and book-to-market portfolios, and negative for the industry portfolios. Aside from yielding

an inconsistent predictive relation with future returns, the slopes on the conditional covari-

ances with the change in TED spread are statistically insignificant for all equity portfolios.

Similar to our earlier findings, the slopes on the conditional covariances with the market

risk and uncertainty factors remain positive and highly significant after controlling for the

covariances with default risk.

Finally, we investigate the significance of risk and uncertainty coefficients after controlling

for liquidity and credit spread simultaneously:

Ri,t+1 = αi + A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) +B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm + A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) +B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

As shown in Panel A of Table VII, for the extended specification above, the common

slope coefficient, B2 on Covt (Ri,t+1,∆ILLIQt+1) is estimated to be positive and marginally
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significant for the book-to-market and industry portfolios, whereas B2 is insignificant for

the size portfolios. The covariances of equity portfolios with the change in TED spread do

not predict future returns as B3 is insignificant for all equity portfolios. Controlling for the

market illiquidity and credit risk does not affect our main findings: the market risk-return

and uncertainty-return coefficients (A and B1) are both positive and highly significant for

all equity portfolios. Equity portfolios that are highly correlated with V RP shock
t+1 carry a

significant premium relative to portfolios that are uncorrelated or minimally correlated with

V RP shock
t+1 .

We have so far provided evidence from the individual equity portfolios (10 size, 10 book-

to-market, and 10 industry portfolios). We now investigate whether our main findings remain

intact if we use a joint estimation with all test assets simultaneously (total of 30 portfolios).

Panel B of Table VII reports the parameter estimates and the t-statistics that are adjusted

for heteroskedasticity and autocorrelation for each series and the cross-correlations among

the error terms. As shown in the first row of Panel B, the risk aversion coefficient is estimated

to be positive and highly significant for the pooled dataset: A = 2.31 with the t-statistic

of 2.64, implying a positive and significant relation between expected return and market

risk. Similar to our earlier findings, the uncertainty aversion coefficient is also estimated to

be positive and highly significant for the joint estimation: B = 0.0053 with the t-statistic

of 3.72. These results indicate a significantly positive market price of uncertainty when all

portfolios are combined together. Equity portfolios with higher sensitivity to increases in

VRP are expected to generate higher returns next period.

The last three rows in Panel B of Table VII provide evidence for a positive and marginally

significant relation between Covt (Ri,t+1,∆ILLIQt+1) and future returns, indicating that the

conditional covariances of equity portfolios with the market illiquidity are positively linked to

expected returns. However, the insignificant relation between Covt (Rm,t+1,∆TEDt+1) and

portfolio returns remains intact for the joint estimation as well. A notable point in Panel B

is that controlling for the market illiquidity and default risk individually and simultaneously

does not influence the significant predictive power of the conditional covariances of portfolio

returns with the market risk and VRP factors.
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D.7 Relative Performance of the Conditional Asset Pricing Model
with Risk and Uncertainty

We now assess the relative performance of the newly proposed model in predicting the cross-

section of expected returns on equity portfolios. Specifically, we test whether the conditional

asset pricing model with the market and uncertainty factors outperforms the conditional

CAPM with the market factor in terms of statistical fit. The goodness of fit of an asset

pricing model describes how well it fits a set of realized return observations. Measures of

goodness of fit typically summarize the discrepancy between observed values and the values

expected under the model in question. Hence, we focus on the cross-section of realized

average returns on equity portfolios (as a benchmark) and the portfolios’ expected returns

implied by the two competing models.

Using equation (23), we compute the expected excess return on equity portfolios based on

the estimated prices of risk and uncertainty (A,B) and the sample averages of the conditional

covariance measures, Covt (Ri,t+1, Rm,t+1) and Covt

(
Ri,t+1, V RP

shock
t+1

)
:

Et [Ri,t+1] = αi + A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
. (A27)

Table VIII of the online appendix presents the realized monthly average excess returns

on the size, book-to-market, and industry portfolios and the cross-section of expected excess

returns generated by the Conditional CAPM and the two-factor conditional asset pricing

models. Clearly the newly proposed model with risk and uncertainty provides much more

accurate estimates of expected returns on the size, book-to-market, and industry portfolios.

Especially for the size and industry portfolios, expected returns implied by the two-factor

model with the market and VRP factors are almost identical to the realized average returns.

The last row in Table VIII reports the Mean Absolute Percentage Errors (MAPE) for the

two competing models:

MAPE =
|Realized− Expected|

Expected
, (A28)

where “Realized” is the realized monthly average excess return on each equity portfolio and

“Expected” is the expected excess return implied by equation (A27). For the conditional
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CAPM with the market factor, MAPE equals 5.20% for the size portfolios, 5.37% for the

book-to-market portfolios, and 6.32% for the industry portfolios. Accounting for the variance

risk premium improves the cross-sectional fitting significantly: MAPE reduces to 0.61% for

the size portfolios, 1.66% for the book-to-market portfolios, and 0.55% for the industry

portfolios.

Figure 1 of the internet appendix provides a visual depiction of the realized and expected

returns for the size, book-to-market, and industry portfolios. It is clear that the two-factor

model with uncertainty nails down the realized returns of the size, book-to-market, and

industrial portfolios, while the conditional CAPM systematically over-predicts these portfolio

returns. Overall, the results indicate superior performance of the conditional asset pricing

model introduced in the paper.
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Table II Results from the Generalized Conditional Covariance

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel
regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where the conditional variance of the market and the conditional covariances are estimated with the general-
ized conditional covariance (GCC) specification of Bali (2008). The parameters in the panel regression and
their t-statistics are estimated using monthly excess returns on the market portfolio and the pooled datasets
of ten decile size, book-to-market, momentum, and industry portfolios (total of 40 equity portfolios) for the
sample period from January 1990 to December 2012. The t-statistics are adjusted for heteroskedasticity and
autocorrelation for each series and cross-correlations among the portfolios. Table show the common slope
coefficients (A and B), the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 ,
and the Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small
vs. Big; Value vs. Growth; Winner vs. Loser; and HiTec vs. Telcm). The p-values of Wald1 and Wald2

statistics are given in square brackets.

A 2.8562

(4.78)

B 0.0026

(4.50)

Size Wald1 9.22

[51.11%]

Small vs. Big Wald2 0.88

[34.85%]

Book-to-Market Wald1 4.46

[92.43%]

Value vs. Growth Wald2 0.78

[37.60%]

Momentum Wald1 19.67

[3.25%]

Winner vs. Loser Wald2 5.35

[2.07%]

Industry Wald1 11.39

[32.80%]

HiTec vs. Telcm Wald2 0.33

[56.38%]

26



Table III Results from Asymmetric GARCH Model

This table reports the portfolio-specific intercepts and the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where the conditional variance and covariances are estimated using the asymmetric GARCH model of Glosten, Jagannathan,
and Runkle (1993). The parameters and their t-statistics are estimated using the monthly excess returns on the market
portfolio and the ten decile size, book-to-market, and industry portfolios for the sample period from January 1990 to December
2010. The alphas (αi) are reported for each equity portfolio and the t-statistics are presented in parentheses. The t-statistics
are adjusted for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The last
four rows, respectively, show the common slope coefficients (A and B), the Wald1 statistics from testing the joint hypothesis
H0 : α1 = α2 = ...αm = 0 , and the Wald2 statistics from testing the equality of Alphas for high-return and low-return
portfolios (Small vs. Big; Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in
square brackets.

Size αi, αm BM αi, αm Industry αi, αm

Small 0.0052 Growth 0.0035 NoDur 0.0051

(1.23) (0.87) (1.94)

2 0.0037 2 0.0047 Durbl 0.0028

(0.85) (1.35) (0.57)

3 0.0040 3 0.0052 Manuf 0.0055

(0.99) (1.55) (1.61)

4 0.0030 4 0.0064 Enrgy 0.0064

(0.75) (1.85) (1.85)

5 0.0038 5 0.0056 HiTec 0.0029

(0.97) (1.71) (0.52)

6 0.0037 6 0.0050 Telcm 0.0004

(1.05) (1.48) (0.11)

7 0.0041 7 0.0057 Shops 0.0036

(1.19) (1.76) (1.04)

8 0.0034 8 0.0058 Hlth 0.0043

(0.97) (1.74) (1.37)

9 0.0036 9 0.0066 Utils 0.0042

(1.11) (1.92) (1.58)

Big 0.0012 Value 0.0081 Other 0.0030

(0.38) (1.88) (0.81)

Market 0.0018 Market 0.0033 Market 0.0028

(0.57) (1.20) (0.82)

A 3.2927 A 2.5303 A 3.5369

(3.11) (2.62) (2.58)

B 0.0054 B 0.0060 B 0.0075

(3.12) (2.68) (3.30)

Wald1 16.91 Wald1 7.89 Wald1 14.41

[0.11] [0.72] [0.21]

Wald2 1.48 Wald2 1.99 Wald2 0.46

[0.22] [0.16] [0.50]
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Table V Controlling for Macroeconomic Variables

This table presents the common slope estimates from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ λ ·Xt + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ λ ·Xt + εm,t+1

where Xt denotes a vector of lagged control variables; default spread (DEF), term spread (TERM), relative
T-bill rate (RREL), aggregate dividend yield (DIV), inflation rate (INF), growth rate of industrial production
(IP), and unemployment rate (UNEMP). The common slope coefficients (A, B, and λ) and their t-statistics
are estimated using the monthly excess returns on the market portfolio and the ten size, book-to-market,
and industry portfolios for the sample period January 1990 to December 2010. The t-statistics are adjusted
for heteroskedasticity and autocorrelation for each series and cross-correlations among the portfolios. The
last two rows the Wald1 statistics from testing the joint hypothesis H0 : α1 = α2 = ...αm = 0 , and the
Wald2 statistics from testing the equality of Alphas for high-return and low-return portfolios (Small vs. Big;
Value vs. Growth; and HiTec vs. Telcm). The p-values of Wald1 and Wald2 statistics are given in square
brackets.

Size Book-to-Market Industry

A 4.2630 2.5763 4.0421

(3.32) (2.40) (2.74)

B 0.0057 0.0051 0.0066

(2.85) (2.25) (2.96)

λDEF -0.3804 -0.0739 0.6243

(-0.50) (-0.09) (1.02)

λTERM -0.1964 -0.5366 -0.5405

(-0.64) (-1.69) (-2.17)

λRREL 0.2330 0.1834 0.0104

(0.68) (0.52) (0.04)

λDIV 0.0489 0.0228 0.0314

(1.33) (0.60) (1.05)

λINF 0.0270 0.7158 -0.1862

(0.04) (0.93) (-0.31)

λIP 0.7433 0.8689 1.1941

(1.77) (2.01) (3.51)

λUNEMP 0.0031 0.0047 0.0026

(1.13) (1.61) (1.15)

Wald1 16.96 7.97 14.78

[0.11] [0.72] [0.19]

Wald2 1.46 1.63 0.67

[0.23] [0.20] [0.41]
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Table VI Results from Individual Stocks

This table presents the common slope estimates (A, B) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B · Covt
(
Ri,t+1, V RP

shock
t+1

)
+ εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B · Covt
(
Rm,t+1, V RP

shock
t+1

)
+ εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on

portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt

(
Ri,t+1, V RP

shock
t+1

)
is the

time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance

risk premia V RP shock
t+1 , Covt

(
Rm,t+1, V RP

shock
t+1

)
is the time-t expected conditional covariance between

the excess return on the market portfolio m and the V RP shock
t+1 , and V art (Rm,t+1) is the time-t expected

conditional variance of excess returns on the market portfolio. The parameters and their t-statistics are
estimated using the monthly excess returns on the market portfolio and the largest 500 stocks trading at
NYSE, AMEX, and NASDAQ, and 318 stocks in the S&P 500 index for the sample period from January
1990 to December 2010. First, the largest 500 firms is determined based on their end-of-month market cap
as of the end of each month from January 1990 to December 2010. Due to the fact that the list of 500
firms changes over time as a result of changes in firms’ market capitalizations, there are 738 unique firms
in our first dataset. In our second dataset, the largest 500 firms is determined based on their market cap
at the end of December 2010. Our last dataset contains stocks in the S&P 500 index. Since the stock
composition of the S&P 500 index changes through time, we rely on the most recent sample. We also restrict
our S&P 500 sample to 318 stocks with non-missing monthly return observations for the period January 1990
– December 2010. The t-statistics are adjusted for heteroskedasticity and autocorrelation for each series and
cross-correlations among the portfolios.

Largest 500 Stocks Largest 500 Stocks Largest 500 Stocks

end-of-month as of December 2010 S&P 500 Index

A 6.4237 A 6.8014 A 6.0243

(8.04) (8.70) (6.79)

B 0.0043 B 0.0044 B 0.0046

(3.61) (3.67) (3.52)
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Table VII Controlling for Market Illiquidity and Default Risk

This table presents the common slope estimates (A, B1, B2, B3) from the following panel regression:

Ri,t+1 = αi +A · Covt (Ri,t+1, Rm,t+1) +B1 · Covt
(
Ri,t+1, V RP

shock
t+1

)
+B2 · Covt (Ri,t+1,∆ILLIQt+1) +B3 · Covt (Ri,t+1,∆TEDt+1) + εi,t+1

Rm,t+1 = αm +A · V art (Rm,t+1) +B1 · Covt
(
Rm,t+1, V RP

shock
t+1

)
+B2 · Covt (Rm,t+1,∆ILLIQt+1) +B3 · Covt (Rm,t+1,∆TEDt+1) + εm,t+1

where Covt (Ri,t+1, Rm,t+1) is the time-t expected conditional covariance between the excess return on

portfolio i (Ri,t+1) and the excess return on the market portfolio (Rm,t+1 ), Covt

(
Ri,t+1, V RP

shock
t+1

)
is the

time-t expected conditional covariance between the excess return on portfolio i and the shock to the variance

risk premia (V RP shock
t+1 ), Covt (Ri,t+1,∆ILLIQt+1) is the time-t expected conditional covariance between

the excess return on portfolio i and the change in market illiquidity (∆ILLIQt+1), Covt (Ri,t+1,∆TEDt+1)
is the time-t expected conditional covariance between the excess return on portfolio i and the change in
TED spread (∆TEDt+1), and V art (Rm,t+1) is the time-t expected conditional variance of excess returns
on the market portfolio. In Panel A, the parameters and their t-statistics are estimated using the monthly
excess returns on the market portfolio and the 10 decile size, book-to-market, and industry portfolios for
the sample period from January 1990 to December 2010. In Panel B, the results are generated using a
joint estimation with all test assets simultaneously (total of 30 portfolios). The t-statistics are adjusted for
heteroskedasticity and autocorrelation for each series and the cross-correlations among the portfolios.

Panel A. Results from 10 Equity Portfolios

10 Equity Portfolios A B1 B2 B3

Size 6.2227 0.0069 1.2423

(2.47) (3.07) (1.29)

Size 3.6465 0.0052 0.6372

(2.84) (2.09) (0.91)

Size 5.7826 0.0057 0.4347 1.1582

(2.48) (2.12) (0.69) (1.17)

Book-to-Market 5.3065 0.0062 2.2003

(2.66) (2.65) (1.34)

Book-to-Market 2.5695 0.0056 0.3148

(2.24) (2.37) (0.54)

Book-to-Market 6.4767 0.0079 2.8237 0.3247

(2.13) (2.90) (1.69) (0.61)

Industry 7.8266 0.0080 2.5677

(2.35) (3.16) (1.52)

Industry 3.1868 0.0071 -0.7625

(2.17) (2.88) (-1.11)

Industry 9.2805 0.0102 3.5064 -1.0014

(2.69) (3.49) (1.99) (-1.43)31



Table VII (continued)

Panel B. Results from 30 Equity Portfolios

A B1 B2 B3

2.3110 0.0053

(2.64) (3.72)

3.2552 0.0060 0.6796

(2.82) (4.03) (1.94)

2.1153 0.0055 -0.0477

(2.41) (3.49) (-0.11)

3.0967 0.0062 0.6497 -0.0844

(2.72) (3.78) (1.95) (-0.20)
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Table VIII Relative Performance of the Two-Factor Model with VRP

This table presents the realized monthly average excess returns on the size, book-to-market, and industry portfolios and
the cross-section of expected excess returns generated by the conditional CAPM with the market factor and the two-factor
conditional asset pricing model with the market and VRP factors. The last row reports the Mean Absolute Percentage Errors
(MAPE) for the two competing models.

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Size Average Excess Returns Expected Excess Returns Expected Excess Returns

Small 0.8464% 0.8461% 0.8742%

2 0.7737% 0.7677% 0.8110%

3 0.7690% 0.7647% 0.8093%

4 0.6632% 0.6637% 0.7032%

5 0.7525% 0.7550% 0.7943%

6 0.7055% 0.7025% 0.7406%

7 0.7409% 0.7379% 0.7749%

8 0.6837% 0.6810% 0.7221%

9 0.6670% 0.6643% 0.7000%

Big 0.4479% 0.4598% 0.4789%

MAPE 0.61% 5.20%

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Book-to-Market Average Excess Returns Expected Excess Returns Expected Excess Returns

Growth 0.5286% 0.5327% 0.5645%

2 0.5614% 0.5658% 0.5961%

3 0.6140% 0.6039% 0.6488%

4 0.6752% 0.6559% 0.6960%

5 0.6119% 0.6017% 0.6423%

6 0.5439% 0.5547% 0.5803%

7 0.6014% 0.5979% 0.6360%

8 0.5885% 0.5956% 0.6233%

9 0.6827% 0.6666% 0.7133%

Value 0.8221% 0.7994% 0.8564%

MAPE 1.66% 5.37%

Realized Return Benchmark Two-Factor Model with VRP Conditional CAPM

Industry Average Excess Returns Expected Excess Returns Expected Excess Returns

Telcm 0.2727% 0.2747% 0.3280%

Utils 0.4712% 0.4727% 0.4965%

Other 0.4965% 0.4910% 0.5366%

Durbl 0.5313% 0.5315% 0.5513%

Shops 0.5954% 0.5912% 0.6247%

Hlth 0.6138% 0.6088% 0.6478%

NoDur 0.6110% 0.6152% 0.6534%

Manuf 0.7172% 0.7206% 0.7474%

Enrgy 0.7606% 0.7643% 0.7824%

HiTec 0.8358% 0.8350% 0.8466%

MAPE 0.55% 6.32%
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Figure 1 Relative Performance of the Conditional ICAPM with Uncertainty

This figure plots the realized monthly average excess returns on the size (top panel), book-to-market (middle

panel), and industry portfolios (bottom panel) and the cross-section of expected excess returns generated

by the Conditional CAPM with the market factor and the Conditional ICAPM with the market and VRP

factors. The results indicate superior performance of the conditional asset pricing model introduced in the

paper.
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