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a b s t r a c t

The most commonly used techniques for credit scoring is logistic regression, and more recent research

has proposed that the support vector machine is a more effective method. However, both logistic

regression and support vector machine suffers from curse of dimension. In this paper, we introduce a

new way to address this problem which is defined as orthogonal dimension reduction. We

discuss the related properties of this method in detail and test it against other common statistical

approaches—principal component analysis and hybridizing logistic regression to better solve and

evaluate the data. With experiments on German data set, there is also an interesting phenomenon with

respect to the use of support vector machine, which we define as ‘Dimensional interference’, and

discuss in general. Based on the results of cross-validation, it can be found that through the use

of logistic regression filtering the dummy variables and orthogonal extracting feature, the support

vector machine not only reduces complexity and accelerates convergence, but also achieves better

performance.

Crown Copyright & 2012 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Credit risk based on the characteristics of the debtor is often
divided into sovereign, corporate, retail, etc. Retail debt is cen-
tered on customer credit, which includes short-term and
intermediate-term credit to finance the purchase of commodities
and services for consumption or to refinance debt incurred for
such purposes. Retail credit is characterized by three points: first,
large amounts with small scale. At present in China, retail loans
can account for a quarter of the total debt, with a speed of growth
approaching 10%; second, the potential risk is high but the
information is scattered and complicated. In the loan application
form there are thousands of variables to describe and, even worse,
is that different organizations always use different variables; and
third, the efficiency of business processing requires highly devel-
oped decision-making techniques as competition is getting more
and more intense. These characteristics determine the banks need
to implement risk management evaluation methods based on
quantitative analysis. A good credit risk evaluation tool can help
to grant credit to more creditworthy applicants and thus
increases profit. Moreover, it can deny credit for the noncredit
worthy applicants and thus decreases losses.

Currently, credit scoring has become the primary method to
develop a credit risk assessment tool. It is a method to evaluate
012 Published by Elsevier Ltd. All
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the credit risk of loan applicants with their corresponding credit
score that is obtained from a credit scoring model (Altman, 1998).
A credit score is a number that can represent the creditworthiness
of an applicant and it is based on the analysis of an applicant’s
characteristics from the application file using the credit scoring
model. The credit scoring model (Thomas et al., 2002) is devel-
oped on the basis of historical data about the applicant’s perfor-
mance on previously made loans with the use of some
quantitative techniques, such as statistics analysis, mathematical
programming, artificial intelligence and data mining. A well-
designed model should have higher classification accuracy to
classify the new applicants or existing customers as good or bad
and the model is the core of credit scoring.

The most popular methods adopted in credit scoring are
statistical methods. The statistical principle discriminating differ-
ent groups in a population can be traced back to 1936 in Fisher
(1936) publication which used a linear model to calculate the
distance between two classes as the decision factor. It is known as
the Fisher’s discrimination model. In 1977, Martin (1977) first
introduced the logistic regression method to the bank crisis early
warning classification. Martin chose to use data between 1970
and 1976, with 105 bankrupt companies and 2058 non-bankrupt
companies in the matching sample, and analyzed the bankruptcy
probability interval distribution, with two types of errors and the
relationship between the split points, he then found that size,
capital structure, and performance were key indexes for the
judgment. Martin determined that the accuracy rate of the overall
classification could reach 96.12%. Logistic regression analysis had
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significant improvements over discriminant analysis with respect
to the problem of classification. Martin also noted that logistic
regression could overcome many of the issues with discriminant
analysis, including the assumption that variables must be nor-
mally distributed. Wiginton (1980), was one of the first research-
ers to report credit scoring results with the logistic regression
model. Although the result was not very impressive, the model
was simple and could be illustrated easily. Then, at that point the
logistic regression model had become the main approach for the
practical credit scoring application. In 1997, Hand and Henley
(1997) summarized statistical methods in credit scoring. These
methods are relatively easy to implement and are able to generate
straightforward results that can be readily interpreted. None-
theless, as commonly known, there are also quite a few limita-
tions associated with the applications of these statistical methods.
First of all, they have the fatal problem called ‘Curse of dimension’
which suggests that if there are numerous variables to apply,
because of multicollinearity between variables, the results are
always erroneous and misleading. Therefore, before applying
statistical methods, the process entailed tremendous data pre-
processing efforts through variable selection. This strategy usually
requires domain expert knowledge and an in-depth understand-
ing of the data. In addition, all the statistical models are based on
a hypothesis condition. In a real world application, a hypothesis
such as that the dependent variable should follow logic normal
distribution and so on, may not hold. Most importantly, based on
these algorithms, these statistical models have difficulty in the
automation of modeling processes and lack robustness. When
environmental or population changes occur, the static models
usually fail to adapt and need to be rebuilt again.

In response to the concern for classification accuracy in retail
loans applications, researchers discovered the application of the
support vector machine (SVM). The support vector machines
(SVM) approach was first proposed by Cortes and Vapnik
(1995). The main idea of SVM is to minimize the upper bound
of the generalization error. SVM usually maps the input variables
into a high-dimensional feature space through some nonlinear
mapping. In that space, an optimal separating hyper plane, which
is one that separates the data with the maximal margin, is
constructed by solving a constrained quadratic optimization
problem. Suykens et al. (2002) constructed the least squares
support vector machine(LS-SVM) and used it for the credit rating
of banks and reported the experimental results compared with
ordinary least squares (OLS), ordinary logistic regression (OLR)
and the multilayer perceptron (MLP). The result showed that the
accuracy of the LS-SVM classifier was better than the other three
methods. Schebesch and Stecking (2005) used a type of standard
SVM proposed by Vanik with a linear and radial basis function
(RBF) kernel for dividing credit applicants into subsets of ‘typical’
and ‘critical’ patterns which can be used for rejecting applicants.
Schebesch and Stecking concluded these types of SVM should be
widely used because of their performance. Gestel et al. (2003)
discussed a benchmark study of seventeen different classification
techniques on eight different real-life credit datasets. They used
SVM and LS-SVM with linear and RBF kernels and adopted a grid
search mechanism to tune the hyper parameters in their study.
The experimental results indicated that six different methods
were the best in terms of classification accuracy among the eight
datasets — linear regression, logistic regression, linear program-
ming, classification tree, neural networks and SVM. In addition,
the experiments showed that the SVM classifiers can overall yield
the best performance. Yang (2007) experimented with several
kernel learning methods to apply adaptive credit scoring, and
found that the results can be very impressive when using the
SVM. Nevertheless the existing research findings have all focused
on batch learning and the selection of parameters, as seen in the
work of Yu et al. (2006,2008) which shows SVM’s advantages in
solving high dimensional problems. However, there are two
obvious drawbacks to SVM (Min and Lee, 2005). One is that when
the variables are not ‘meaningful’ and ‘huge’, SVM requires a long
time to train and the hyper plane is not accurate, which we also
define as curse of dimension. The drawback is a fatal flaw,
although this method has good robustness and can always
achieve higher accuracy, when applied to samples, SVM lacks
the capability to explain its results. That is, the results obtained
from SVM classifiers are not intuitive to humans and are difficult
to illustrate comparing with logistic regression. This is a common
problem that all machine learning methods are facing. Though the
results with these methods have strong advantages in accuracy,
the non-parameter results often lack of statistical theory, and so
which cannot be directly corresponding to the realistic economic
significance. Just as in regression analysis, regression coefficient
directly represents the influence of independent variable acting
on dependent variable, but in support vector machine (SVM), the
relationship between independent variable and dependent vari-
able cannot be explained directly. So this limits these methods in
practical application, and at the same time this also is a cause for
over fitting phenomenon.

Dimension curse (Anderson, 1962) can be defined as this
phenomenon: as the number of variables increase, more and
more variables will have multicollinearity, which can be
described as when the correlation coefficient gets large, and is
in a high dimensional space, the distribution of the sample points
will become sparse. Statistical methods will prove to be erroneous
with multicollinearity, and SVM will need a large amount of
support vectors to construct hyper plane. Now, to solve the curse
of dimensionality, researchers often use two methods to reduce
variables. One method is feature selection, another is feature
extraction. Feature selection is to select important variables
closely related with the target in order to reduce the model’s
dimensions; feature extraction is to construct new variables
which are not linearly dependent through structure transforma-
tion. The drawback of feature selection is in reducing information
and the advantage is that it is easy to explain. Feature extraction
is just the opposite. Many scholars have performed a lot of work
to reduce dimensions. Sugiyama (2007) tried feature selection to
reduce dimensions in Fisher discriminant analysis. Bellman
(1961) is the first to note the curse of dimension in kernel
classifiers. He stipulated that owing to the large amounts of data
from public financial statements that can be used for bankruptcy
predictions, the large scale of input data makes Kernel classifiers
infeasible due to the curse of dimensionality. Consequently, one
needs to transform the input data space to a suitable low
dimensional subspace that optimally represents the data struc-
ture. In the studies of Huang (2009), he discussed the use of a
nonlinear graph as a type of method for feature selection to
reduce dimension. Han and Han (2010) have tried logistic
regression to select meaningful variables for neural networks.
The other methods regarding dimensionality reduction, linear
algorithms such as principal component analysis and linear
discriminant analysis, are the two most widely used methods,
which can be found in the works of Gutierrez et al. (2010) and
Hua et al. (2007).

Just based on the studies above, we want to improve the
accuracy of credit scoring through dimension reduction. Our
novel contribution is that we give these researchers in the field
of application using logistic regression and support vector
machine a new way to address dimension curse that we defined
as ‘Orthogonal dimension reduction’ (ORD). Based on the experi-
ence of statistics, we compare the traditional way to address
dimension curse—hybridizing with logistic regression (HLR)
(Fukunaga, 1990) on behalf of feature selection and principal
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component analysis (PCA) (Jolliffe, 2002) on behalf of feature
extraction. Then, we fit these helpful features chosen by ORD, HLR
and PCA in logistic regression and support vector machine to
evaluate the accuracy of credit scoring. Furthermore, we compare
these results with the original methods without reducing dimen-
sion. Finally, we acquire cross-validation to make the results
sensitive.

The structure of the rest in this paper is as follows: the next
section puts forward the prior research of logistic regression and
support vector machine. Section 3 briefly summarizes the pre-
vious methods of reducing dimension. Section 4 describes our
method of orthogonal dimension reduction and its main princi-
ples in detail. Section 5 is about experiment design, including data
and variable description, data pre-processing, evolutionary learn-
ing for SVM, features selection with HLR, features extraction with
PCA and ODR, cross-validation design, and accuracy criterion.
Experimental studies using the original methods and the methods
hybridizing dimension reduction are presented in Section 6. The
Final section discusses the interesting results and gives some
remarks.
Margin=2/ |w|

Fig. 1. Separating hyperplane for two separable classes.
2. Prior research

Let X ¼ x1,x2, � � � xnð Þ
T be a set of n random variables which

describe the information from a customer’s application form and
credit reference bureau. The actual value of the variables for a
particular applicant i is denoted by Xi ¼ x1i,x2i, � � � xnið Þ

T . All sam-
ples denoted by S¼ Xi,yi

� �
,i¼ 1,2, � � � ,N, where N is the number of

samples, Xi is the attribute vector of the ith customer, and yi is its
corresponding observed result of timely repayment. If the custo-
mer is good, yi¼1, else yi¼�1. Let I¼{i9yi¼1,iAN,(xi,yi)AS} is on
behalf of good customers, J¼{i9yi¼�1,iAN,(xi,yi)AS} is on behalf
of bad ones.

Though in practice a credit scoring result needs the score of
each applicant, in fact our greatest concern is the accuracy of the
distinction between categories. Thus, the credit scoring problem
can be described simply as making a classification of good or bad
for a certain customer using the attribute characteristics of a
certain customer. That is, using the attribute vector Xk, one can
judge the credit status. The typical credit risk modeling techni-
ques, which were tested in this paper, are briefly described below.

2.1. Logistic regression

Just as linear regression, logistic regression assumes that the
sum of the weighted input variables is linearly correlated to the
natural log of the odds that the outcome event will happen. It can
be described as (1):

log p=1�p
� �

¼ b1x1þb2x2þ . . .þbkxkþe¼ bT Xkþe ð1Þ

where b¼(b1,b2,yy,bk) is the vector of the coefficients of the
model, the maximum likelihood method can be applied to
compute the estimate of bi i¼ 1,2 � � � k

� �
. We refer to p/(1�p)

as odds-ratio and assume the regression model in (1) is obtained,
the estimated probability of no default is as follows:

p¼
eb

T x

1þeb
T x

ð2Þ

Linear regression is based on the idea of using vector X to
explain y logistic regression is the same, using X to explain natural
log of the odds, so just like linear regression, it has good
interpretations in statistical sense. But logistic regression can
overcome the flaw of linear regression, which is that the right side
of the model could take any value from �N to þN but the left
side can only take values between 0 and 1.
The method has two shortcomings: one is that it can only
explain the intrinsically linear relationship, and cannot address
non-linear effects in practice. Researchers always explain any
non-linear effects with variable combinations and this requires
several repetitions of a trial-and-error process. In addition, the
method is sensitive to redundancy or collinearity in the input
variables to guarantee the basic assumption of e, which is
ei �NID 0,s2

� �
, which therefore requires that y obey logic normal

distribution. If this condition is not satisfied, this method will give
erroneous estimates of the coefficients and is not valid for
statistical interpretation.

2.2. Support vector machine

The main idea of support vector machine is to minimize the
upper bound of the generalization error not the empirical error.
Without loss of generality, in a two-dimensional space, if these
scoring samples are linear separable, The upper bound can be
constructed by (wx)þb¼1 and (wx)þb¼�1, so a decision func-
tion can be created to specify whether a given application belongs
to either I or J. Its definition is as follow: f(x)¼sign((wx)þb).
While the vector w defines the boundary, in order to get the two
upper bound separated as far as possible, the optimal hyperplane
can be obtained as a solution to the optimization problem:

max 2
JwJ2

s:t:

yi wUxið ÞþbÞZ1 i¼ 1,2, � � �n
� ð3Þ

which could be written as (4):

min 1
2 JwJ2

s:t:

yi wUxið ÞþbÞZ1 i¼ 1,2, � � �n
� ð4Þ

So an optimal separating hyperplane which is one that
separates the data with the maximal margin is constructed by
solving a constrained quadratic optimization problem whose
solution has an expansion in terms of a subset of training patterns
that lie closet to the boundary, and this subset of patterns are
called as support vector (SV). Fig. 1 shows such a hyperplane that
separate two classes to the boundary.

In many practical situation, the training samples cannot be
linear separable. There is a need to use soft margin and C penalty
parameters, this is formulized as the following constraint opti-
mization problem:

min J w,b,xkð Þ ¼ 1
2 JwJ2

þC
P

kxk

s:t:

yi wUxið ÞþbÞZ1 i¼ 1,2, . . .nxkZ0
� ð5Þ

where C is the corresponding penalty parameters indicating a
tradeoff between large margin and a small number of margin
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failures: few errors are permitted for high C, while low C allows a
higher proportion of errors in the solution. The solution to this
optimization problem can be given by the saddle point of the
Lagrange function with Lagrange multipliers ai, and then the
problem can be transformed into its dual form:

max J að Þ ¼ � 1
2

P
k

P
lakalykyl/xkUxlSþ

P
kak

s:t:P
kakyk ¼ 0,

yk ¼ 1,kA I

yk ¼�1,kA J
0rakrC, 8k

( ð6Þ

In cases where the linear boundary in input spaces is not be
able to separate the two classes accurately, a hyperplane is
created that allows linear separation in the higher dimension by
the use of transformation function j(U) which can map the input
space into a higher dimensional feature space (z-space), then the
objective function can be rewritten as:

max J að Þ ¼�1

2

X
k

X
l
akalykyl/j xkð Þj xlð ÞSþ

X
k
ak ð7Þ

But using this way to transformation is relatively compu-
tation-intensive. And we can find j(U) only uses for inner product,
therefore a kernel can be used to perform this transformation and
then inner product can be replaced by kernel function which is
given by Mercer’s theorem. The kernel function is defined as (8):

K x,yð Þ ¼jðxÞjðyÞ ð8Þ

The most common kernel functions are listed below.
(1)
x

Linear kernel function: K xk,xð Þ ¼ xT
k x� �
(2)
 Polynomial function: K xk,xð Þ ¼ xT
k xþ1

d� �

(3)
 Gaussian function: K xk,xð Þ ¼ exp �Jxk�xJ2=s2

2 2
� �
(4)
 Radial basis kernel: K xk,xð Þ ¼ exp �Jxk�xJ =2s
Then the objective function can be rewritten as:

max J að Þ ¼ � 1
2

P
k

P
lakalykylK xk,xlð Þþ

P
kak

s:t:P
kakyk ¼ 0,

yk ¼ 1,kA I

yk ¼�1,kA J
0rakrC,8k

( ð9Þ

In some perspectives, the support vector machines and artificial
neural networks are similar; this can be illustrated in the following
Fig. 2. SVM can be seen as a type of networks which uses the kernel
function as an activation function, and the optimization program as a
1 x2 xd

…………

K(x1,x) K(x2,x) K(xd,x)…………

y

a1y1 a2y2 a3y3

Fig. 2. Structure of SVM.
threshold function. So to control the generalization capability of SVM,
there are a few parameters such as C and kernel parameters that need
to be trained. But there is not a most effective method up to now, a
number of approaches have been presented including Genetic algo-
rithms (Jack and Nandi, 2002), Artificial Immunization Algorithm
(Yuan and Chu, 2007), Particle Swarm Optimization (Samanta and
Nataraj, 2009) and so on. In our work, the parameters choice is not
the focus of our research, we give a general method in Section 4.
3. Reducing dimension

3.1. Feature selection

The task of feature selection is to examine characteristics which
are contained in the input variables, and then delete those that are
irrelevant to the target variables. There are many statistical methods
such as variance analysis (ANOVA) and correlation analysis.
However, they are all based on the conditions of the experimental
data, for credit scoring, the most widely used method is hybridizing
with logistic regression to do feature selection.

Hybridizing with logistic regression is based on the statistics’
meaning. In these regression models, through the variance
analysis, we can find the variable which can give the largest
contribution to the variation of target variables, and we think
these variables have the closest relationship to the target variable.
As (1), ŷi is the regression result, y is the mean of observation, yi is
an observation. The total fluctuations of data can be described as
ST ¼S yi�y

� �2
, SR ¼S ŷi�y

� �2
measures explanatory power of E(y)

decided by X, and Se ¼S yi�ŷi

� �2
measures the difference between

result of regression and observation. So ST¼SRþSe and it can be
proved Se=s2 � w2 n�2ð Þ; if E(y) decided by X is true, SR=s2 � w2ð1Þ;
and Se is independent with SR. Therefore, through ANOVA we can
get the useful variable.

3.2. Feature extraction

The most widely used method for feature extraction is princi-
pal component analysis. The principle of component analysis is to
keep as much information as possible of the original variables,
and to achieve dimension reduction, through the use of compre-
hensive new variables.

Let u¼E(X), S¼ covðXÞ ¼ E xx0ð Þ is the covariance matrix.
To Apply linear transformation with X, we can construct the
new variables Z as follow:

z1 ¼ u11x1þu12x2þ � � � þu1nxn

z2 ¼ u21x1þu22x2þ � � � þu2nxn

. . .. . .

zn ¼ un1x1þun2x2þ � � � þunnxn

8>>><
>>>:

ð10Þ

PCA tries to sequentially find the projection u1,u2,yun

(where JuiJ¼ 1) such that the variance of the projected data
zi(i¼1,2,y,n) is maximized:

var zið Þ ¼ cov u0iX
� �

¼ u0iSui ð11Þ

If S is estimated by its MLE, which is the sample covariance
matrix S defined as (12):

S¼
1

N

XN

k ¼ 1

xkx0k ð12Þ

Let l1Zl2Z � � �Zln is eigenvalue of S and r1,r2, � � � rn is the
corresponding eigenvectors, based on spectrum decomposition,
the ith principal component can be written as (13), with
var zið Þ ¼ r0iSri ¼ li and cov zi,zj

� �
¼ r0iSrj ¼ 0

zi ¼ r1ix1þr2ix2þ � � � þrnixn i¼ 1,2,. . .,nð Þ ð13Þ
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4. Orthogonal dimension reduction

In this section we give a new method to do feature extraction.
The step of transform is described as (14):

z1 ¼ x1

z2 ¼ x2�
x0

2
z1

x0
1
z1

z1

z3 ¼ x3�
x0

3
z1

x0
1
z1

z1�
x0

3
z2

x0
2
z2

z2

� � � � � �

zs ¼ xs�
Xs�1

i ¼ 1

x0szi

x0izi
zi

ð14Þ

Theorem 1. : Any group of vectors x1, � � � ,xsð Þ can transform into
orthogonal vectors z1, � � � ,zsð Þ by the process as (14).

The process in two dimensions space can be explained as Fig. 3.
The proof can be found in the Ref. Jain and Gunawardena (2003).

From Theorem 1, we know that for any group of variables with
the rank srn to apply the orthogonal transform, and we get
z1,z2, � � � ,zn. Among them, there must be s variables orthogonal
with each other, and the other (p–s) variables are zero vector.
Therefore, through this transform, it normally reduces the dimen-
sions of the original high dimensional system.

Theorem 2. : If the variables x1,x2, � � � ,xn are standardized, after
orthogonal transform, the variance z1,z2, � � � ,zs can get is
Var zkð Þ ¼ Var xkð Þ�S

k�1
j ¼ 1r2 zj,xk

� �
Proof.

_var xkð Þ ¼ 1

‘ 1
n JxkJ

2
¼ 1

‘ JxkJ
2
¼ n

_xk ¼ zkþ
Xk�1

j ¼ 1

xT
k zj

JzjJ
2

zj

/zkUzjS¼ 0

‘ 1
n JxkJ

2
¼ 1

n JzkJ
2
þ 1

n

Xk�1

j ¼ 1

xT
k zj

JzjJ
2

" #2

JzjJ
2

‘ 1
n JxkJ

2
¼ 1

n JzkJ
2
þ
Xk�1

j ¼ 1

r2 zj,xk

� �

‘var zkð Þ ¼ var xkð Þ�
Xk�1

j ¼ 1

r2 zj,xk

� �

Information in data collection can be measured by the total
variance of variables. From Theorem 2, we know that the reduc-
tions of these variables are redundancy information that can be
measured by the correlation coefficient.

In short, through the orthogonal transform process we can reduce
dimensions to realize feature extraction from two aspects: firstly,
through the transform, one will find the orthogonal basis of a high
dimensional space, which will help find whether a variable is a linear
combination of other variables or not. If it is, the transform will turn it
into 0 vectors. Thus, it is helpful to reduce the number of variables;
X2

X1

Z2

Fig. 3. Orthogonal transform.
furthermore, to those which are not 0 vectors, because of the
subtraction of the correlation coefficient, the new feature can obtain
the core original variables.

The step to apply orthogonal dimension reduction is summar-
ized below:

Step 1. Standardize the group of x1,x2, � � � ,xn

Step 2. Choose z1, which has the maximum correlation
coefficient squares with the other variables, might as well
written as z1¼x1

Step 3. Let z1
j ¼ xj�ðx

0
jz1=x01z1Þz1, j¼ 2,3, � � � ,p calculate variance

varðz1
j Þ with the vectors z1

j ,j¼ 2, � � � ,n which are not 0 vectors,

find the one has the largest variance var z2ð Þ ¼ max varðz1
j Þ,

j¼ 2, � � � ,n as z2, written as z2 ¼ z1
2

Step 4. Let z2
j ¼ xj�ððx

0
jz1Þ=ðz

0
1z1ÞÞz1�ððx

0
jz2Þ=ðz

0
2z2ÞÞz2, j¼

3,4, . . . ,m, choose z3 with the with the vectors which are not

0 vectors and var z3ð Þ ¼maxvarðz2
j Þ, ¼ 2, � � � ,m

Step 5. Repeat the step until TNP¼ ðSs
i ¼ 1VarðzsÞ=Sq

j ¼ 1

VarðzjÞÞZd, d is settled with situations.
Step 6. End. The first s vectors are the features extracted from
orthogonal dimension reduction (ODR).
5. Experiments design

This section is structured in six subsections. Firstly, we have a
brief description of the dataset used in the experiments. And then
we discuss the process of data pre-processing for modeling. In the
third part, we discuss the methods for training parameters in
SVM. The methods reducing dimension which are introduced in
Sections 3 and 4 will be tested in the next subsections. Then, to
test the robustness of the models, we design two cross-validation
methodologies that are illustrated in the fifth subsection. The final
subsection defines evaluation criteria.

5.1. Dataset description

The credit dataset used in these experiments is German credit
dataset, which is provided by Professor Dr. Hans Hofmann of the
University of Hamburg and is obtained from UCI Machine Learning
Repository (http://www.ics.uci.edu/�mlearn/databases/statlog/
german/). The total number of instances is 1000 including 700
creditworthy cases and 300 default cases. There is no missing data.

For each applicant, 20 kinds of attribute are available; the variable
names of these attributes used in the models are listed below with
short names in brackets. There are 13 categorical attributes including
status of existing checking account (checking), credit history (his-
tory), purpose for the credit (purpose), saving account (savings),
present employment since (employed), personal status and sex
(marital), other debtors/guarantors (coapp), property style (prop-
erty), other installment plans (other), housing situation (housing), job
status (job), telephone status (telephone), foreign worker or not
(foreign) and 7 numerical attributes including duration in month
(duration), credit amount (amount), installment rate in percentage of
disposable income (installp), present residence since (resident), age
in years (age), number of existing credits at this bank (existcr),
number of people being liable to provide maintenance for (depends).
Tables 1 and 2 below show the basic statistics and information of
these attributes. Table 3 shows correlation matrix.

From these statistics of these attributes, we can see some
attributes have relatively concentrated distribution, for example
foreign and coapp, the modes get more than 90%. With the
numerical attributes, the variable amount is more ‘big’ than others
in the amount level. And because of concentrated level of categorical

http://www.ics.uci.edu/~mlearn/databases/statlog/german/
http://www.ics.uci.edu/~mlearn/databases/statlog/german/
http://www.ics.uci.edu/~mlearn/databases/statlog/german/


Table 1
Statistics of categorical attributes.

Variable Level Missing Mode Mode (%)

Foreign 2 0 1 96.3

Coapp 3 0 1 90.7

Other 3 0 3 81.4

Housing 3 0 2 71.3

Job 4 0 3 63

Savings 5 0 1 60.3

Telephon 2 0 1 59.6

Marital 4 0 3 54.8

History 5 0 2 53

Checking 4 0 4 39.4

Employed 5 0 3 33.9

Property 4 0 3 33.2

Purpose 10 0 3 28

Table 2
Statistics of numerical attributes.

Variable Means STD Missing Min Median Max

Age 35.55 11.38 0 19 33 75

Amount 3271.26 2822.74 0 250 2319 18424

Depends 1.16 0.36 0 1 1 2

Duration 20.9 12.06 0 4 18 72

Existcr 1.41 0.58 0 1 1 4

Installp 2.97 1.12 0 1 3 4

Resident 2.85 1.1 0 1 3 4
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they always have relevance with others which can be found in
Table 3. So there may need some pre-processing before modeling.

5.2. Data pre-processing

To address the categorical attributes, the typical method is to code
them with their levels as dummy variables. Then, it will reduce
relevance. In our models we use the same method, so all of the
categorical attributes are used with their levels. For example, foreign
has two levels, so there will be two variables in the model—one is
foreigh_0, and another is foreign_1. Other variables are the same.
However, it can be seen that the way to address categorical attributes
will cause the number of total variables to increase significantly.

To address the numerical attributes, there is no need to do
normalization with the logistic regression model (Liu et al., 2012).
Though the variable coefficient estimates bi vary because of the
unit, the correlation coefficient estimate R2 and the model’s results
are not influenced, therefore it has no effect on the choice of
variables. Because there is no proof as to the necessity of normal-
ization with SVM, we cannot give a logistic reason for normal-
ization, but in practice, we always normalize the numerical
attributes in the models so that the results cannot be affected by
the unit. To better demonstrate we also try the experiments with
dimensionless numerical attributes and the ones which are not
normalized, respectively, to compare in the models of SVM. The
results will be illustrated in the fifth section. The method we use
for normalization is (xi�mean)/std, this method can transform any
distribution of the variable into a standard normal distribution,
which well achieves the variable distribution that the statistical
models require. Fig. 4 shows the distributions of two main
numerical variables in the data set: amount and age. It can be
found that they are very different from normal distribution.

5.3. Select parameters for SVM

As introduced in the second part above, although SVM is a
powerful learning method for classification problems, its
performance is sensitive not only to the algorithm that solves
the quadratic programming problem, but also to the parameters
set in the SVM. In the process of using SVM, the first issue is how
to discover the best parameter of SVM for a specified problem.

An easy and reliable approach is to determine a parameter range,
and then make an exhaustive grid search over the parameter space
to find the best setting (Rojas and Nandi 2006). In the grid search
method, each point in the grid is defined by the grid range [(C_min,
sigma_min), (C_max, sigma_max)] and a unit grid size (_C, _sigma)
is evaluated by the objective function F. The point with the smallest
F value corresponds to the optimal parameters. In the experiments,
we used 750 samples and gird search to select t C and kernel
parameters of SVM. To address the nonlinear effect, we choose a
linear kernel function to compare with the logistic regression.

5.4. Reduce dimension

These categorical attributes in the previous section are all con-
tained in dummy variables which avoid multi-linearity. However, the
number of variables will be increasing. To reduce these types of
variables, they must fit the feature selection. We apply logistic
regression to this problem and set 15% as the significance level. In
this paper, we refer to this method as HLG for short. Because logistic
regression can give the model more meaningful interpretation for
three reasons. First, logistic regression selects the most relevant
variables to the target variables into the model. Second, in statistics
logistic regression can use the Wald test to decide whether adding
variables improves the unconstrained model. Third, by fitting variable
selection with logistic regression we can exclude the multiple
correlations among variables. Then, we follow these steps: firstly,
we use all the dummy variables as inputs, which have been prepared
with the methods introduced in Section 5.2. And secondly we address
the variable selection process in logistic regression. The steps of
selecting variables using the forward logistic regression are summar-
ized in Table 4.

For these numerical attributes, after standardization, we
experiment with PCA and ORD to compare.

The process of PCA is introduced in Section 3.2. The results of
PCA are shown in Tables 5 and 6.

From Table 5, the first three components have contained 60%
variance. In order to make comparable with ODR, we can reduce
seven dimensions to three what can be obtained from the eigenvec-
tors of correlation matrix. For example, z1¼0.66duþ0.72am�

0.22inþ0.06reþ0.01ageþ0.02exþ0.03de.
For ODR, the correlation matrix of numerical attributes is

shown in Table 7 below. MaxS7
i ¼ 1r2 xj,xi

� �
¼S7

i ¼ 1r2 x2,xið Þ so we
choose z1¼x2, and then apply ODR with the other six variables,
the variance of the six variables z1

i ,i¼ 1,3,4,5,6,7 listed in Table 8.
Maxvar z1

i

� �
¼ var z1

6

� �
so let z2 ¼ z1

6, repeat this process till all
the variables have realized orthogonalization.

Calculate net information percentage NP¼SiVar(zi)/SiVar(xi) and
total net information percentage TNP¼Ss

i ¼ 1Var zsð Þ=Sq
j ¼ 1Var zj

� �
,

the results listed in Table 9 and the original variables are labeled in
brackets. Fig. 5 shows the accumulative contribution of zi.

From Fig. 5, we can see z1,z2,z3 have 74% information of all, and
has 66% variance which is smaller than the sum of our zi. This
means by ODR we can only choose the orthogonal variables
z1,z2,z3 instead of the seven numerical attributes.

5.5. Cross-validation

As the best model is tailored to fit one sub-sample, the model
often estimates the true error rate too optimistically. Therefore, to
get a true estimate of the error rate, we applied two types of
cross-validation methodologies which were suggested by Zhang
et al. (1999). First, as these typically did, the cross-validation



Table 3
Correlation matrix.

H0: Rho¼0 Prob49r9

Checking Duration History Purpose Amount Savings Employed Installp Marital Coapp Resident Property

Checking 1 �0.07201 0.19219 0.02878 �0.0427 0.22287 0.10634 �0.00528 0.04326 �0.12774 �0.04223 �0.03226

0.0228 o0.0001 0.3632 0.1772 o0.0001 0.0008 0.8676 0.1716 o0.0001 0.182 0.3081

Duration 1 �0.07719 0.14749 0.62498 0.04766 0.05738 0.07475 0.01479 �0.02449 0.03407 0.30397

0.0146 o0.0001 o0.0001 0.132 0.0697 0.0181 0.6404 0.4392 0.2818 o0.0001

History 1 �0.09034 �0.05991 0.03906 0.13823 0.04437 0.04217 �0.04068 0.0632 �0.05378

0.0043 0.0583 0.2172 o0.0001 0.1609 0.1827 0.1987 0.0457 0.0892

Purpose 1 0.06847 �0.01868 0.01601 0.04837 0.00016 �0.01761 �0.03822 0.01097

0.0304 0.5551 0.613 0.1264 0.9961 0.5781 0.2272 0.7291

Amount 1 0.06463 �0.00837 �0.27132 �0.01609 �0.02783 0.02893 0.3116

0.041 0.7916 o0.0001 0.6113 0.3793 0.3608 o0.0001

Savings 1 0.12095 0.02199 0.01735 �0.10507 0.09142 0.01895

0.0001 0.4873 0.5837 0.0009 0.0038 0.5495

Employed 1 0.12616 0.11128 �0.00812 0.24508 0.08719

o0.0001 0.0004 0.7977 o0.0001 0.0058

Installp 1 0.11931 �0.0114 0.0493 0.05339

0.0002 0.7189 0.1192 0.0915

Marital 1 0.05063 �0.02727 �0.00694

0.1096 0.389 0.8265

Coapp 1 �0.02568 �0.15545

0.4173 o0.0001

Resident 1 0.14723

o0.0001

Property 1

Age

Other

Housing

Existcr

Job

Depends

Telephone

Foreign

H0: Rho¼0 Prob49r9

Age Other Housing Existcr Job Depends Telephone Foreign

Checking 0.05975 0.04684 0.02242 0.07601 0.04066 �0.01415 0.0663 �0.02676

0.0589 0.1388 0.4788 0.0162 0.1989 0.655 0.0361 0.398

Duration �0.03614 �0.05488 0.15705 �0.01128 0.21091 �0.02383 0.16472 �0.1382

0.2536 0.0828 o0.0001 0.7216 o0.0001 0.4515 o0.0001 o0.0001

History 0.14709 0.12197 0.06209 0.43707 0.01035 0.01155 0.05237 0.01387

o0.0001 0.0001 0.0496 o0.0001 0.7437 0.7153 0.0979 0.6613

Purpose 0.00131 �0.09661 0.01839 0.05494 0.00808 �0.03258 0.07837 �0.09972

0.967 0.0022 0.5613 0.0825 0.7985 0.3034 0.0132 0.0016

Amount 0.03272 �0.04601 0.13563 0.02079 0.28539 0.01714 0.277 �0.05005

0.3013 0.146 o0.0001 0.5113 o0.0001 0.5882 o0.0001 0.1137

Savings 0.08425 0.00191 0.00651 �0.02164 0.01171 0.02751 0.08721 0.00709

0.0077 0.9519 0.8372 0.4942 0.7115 0.3848 0.0058 0.8227

Employed 0.25623 �0.04015 0.11113 0.12579 0.10122 0.09719 0.06052 �0.02723

o0.0001 0.2046 0.0004 o0.0001 0.0013 0.0021 0.0557 0.3897

Installp 0.05827 �0.00098 0.0894 0.02167 0.09776 �0.07121 0.01441 �0.09002

0.0655 0.9752 0.0047 0.4937 0.002 0.0243 0.6489 0.0044

Marital 0.00778 �0.03676 0.09958 0.06467 �0.01196 0.12216 0.02727 0.06562

0.8058 0.2454 0.0016 0.0409 0.7057 0.0001 0.3889 0.038

Coapp �0.02987 �0.05902 �0.06589 �0.02545 �0.05796 0.0204 �0.07503 0.118

0.3453 0.0621 0.0372 0.4215 0.0669 0.5193 0.0176 0.0002

Resident 0.26642 0.00209 0.01194 0.08963 0.01265 0.04264 0.09536 �0.0541

o0.0001 0.9474 0.7061 0.0046 0.6894 0.1778 0.0025 0.0873

Property 0.07261 �0.09003 0.34522 �0.00777 0.27615 0.01187 0.1968 �0.13246

0.0217 0.0044 o0.0001 0.8063 o0.0001 0.7077 o0.0001 o0.0001

Age 1 �0.04235 0.30142 0.14925 0.01567 0.1182 0.14526 �0.00615

0.1809 o0.0001 o0.0001 0.6206 0.0002 o0.0001 0.846

Other 1 �0.0723 �0.04844 �0.00478 �0.07689 �0.01936 0.01521

0.0222 0.1258 0.8801 0.015 0.5409 0.6309
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Table 3 (continued )

H0: Rho¼0 Prob49r9

Age Other Housing Existcr Job Depends Telephone Foreign

Housing 1 0.04859 0.10719 0.11451 0.10241 �0.06358

0.1246 0.0007 0.0003 0.0012 0.0444

Existcr 1 �0.02632 0.10967 0.06555 �0.00972

0.4057 0.0005 0.0382 0.7589

Job 1 �0.09356 0.38302 �0.10094

0.0031 o0.0001 0.0014

Depends 1 �0.01475 0.07707

0.6412 0.0148

Telephone 1 �0.1074

0.0007

Foreign 1

Fig. 4. Distributions of amount and age.

Table 4
Logistic regression reducing categorical variables.

Steps Improvement Model OA (%) Variables

x2 df Sig. x2 df Sig.

1 131.336 3 0 131.336 3 0 70.00 checking_4

2 38.497 1 0 169.833 4 0 73.40 coapp_1

3 29.311 4 0 199.144 8 0 74.80 history_2

4 33.509 9 0 232.653 17 0 76.20 purpose_3

5 18.753 4 0.001 251.406 21 0 76.20 savings_1

6 11.133 2 0.004 262.539 23 0 76.60% employed_3

7 6.488 1 0.011 269.027 24 0 77.40 housing_2

8 7.015 1 0.008 286.944 28 0 77.50% job_3

9 8.561 2 0.014 295.505 30 0 78.00% other_3

Table 5
Eigenvalues and eigenvectors of the correlation matrix.

Eigenvalue Difference Proportion Cumulative

1 1.66 0.25 0.24 0.24

2 1.41 0.29 0.20 0.44

3 1.12 0.18 0.16 0.60

4 0.94 0.07 0.13 0.73

5 0.87 0.15 0.12 0.86

6 0.72 0.44 0.10 0.96

7 0.28 0.04 1.00

Table 6
Eigenvectors of the correlation matrix.

Eigenvectors

z1 z2 z3 z4 z5 z6 z7

Duration 0.66 �0.04 0.32 0.20 0.14 0.03 �0.64

Amount 0.72 �0.01 �0.06 �0.03 �0.05 �0.08 0.69

Installp �0.22 0.12 0.75 0.43 0.29 �0.01 0.33

Residence 0.06 0.54 0.22 �0.49 0.00 0.64 0.02

Age 0.01 0.62 0.06 �0.24 0.04 �0.73 �0.09

Existcr 0.02 0.44 �0.14 0.59 �0.65 0.13 �0.02

Depends 0.03 0.33 �0.52 0.35 0.69 0.17 0.01
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methodology is employed to test the effect of sampling variation
on the model performance. To test the robustness of the models,
one should apply a simple validation technique, by dividing the
data set into a training sample and a validating sample, with a
small scale which evaluates the predictive effectiveness of the
fitted model. Second, to study the overall predictive capability of
the classification models for unknown populations, one should
use the whole data set as a large test set, if the data set for
unknown population is not available.

To implement the first cross-validation methodology, we
divide the data sample into four mutually exclusive equal sub-
samples. Each sub-sample has the same rate for the bad custo-
mers and the good ones. We train the logistic regression and the
SVM with three sub-samples, and validate the models with the
fourth remaining sub-sample. Therefore, out-of-train prediction
of validation gives us a relative true classification rate of all the
observations in the data set with its averages. Secondly, to test the
overall predictive capability of the unknown population compre-
hensively, we use the entire data sample, by using the entire data
set as the test sample; we can reduce the sampling variation in
the test design. Finally, we apply statistical tests to test these



Table 8
Variance of Z.

Var (z) z1

Duration

z3

Installp

z4

Residence

z5

Age

z6

Existcr

z7

Depends

0.587915 0.401513 0.7569 0.000126 0.971213 0.8464
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models for accuracy. We use a paired-t test to test the difference
between the means of the original method and the method
hybridizing reduction of dimension in experimental and illustrate
the application in Section 6.

5.6. The evaluation criteria

The problem of credit scoring mainly focuses on the accuracy
of classification. As the criterion of accuracy, the goal is to judge
the good ones from the bad. Let the number of creditworthy cases
classified as good be GG and classified as bad be GB; denote the
number of default cases classified as good with BG and as bad
with BB. Then, the evaluation criteria measure the accuracy of the
classification, which is defined as follows:

Good credit accuracy GCAð Þ ¼
GG

GGþGB
� 100%

Bad credit accuracy BCAð Þ ¼
BB

BGþBB
� 100%

Overall accuracy OAð Þ ¼
GGþBB

GGþGBþBGþBB
� 100% ð15Þ

Defined by these three indicators, one can see GCA is the
specificity, which determines the ability to identify good clients;
BCA is the sensitivity for the model that shows the ability to
identify bad customers. At the same time, OA gives the total
efficiency of the model and reflects prediction accuracy of the
model and can compare with others.

In our study, Type I error occurs when a bad credit is classified
as good credit, which equals 1-BCA. And Type II error occurs when
a good credit is classified as a bad credit, which equals 1-GCA. For
credit scoring, Type I error is more critical than Type II error. Note
that all these measures with Type I error and Type II error are
mostly obtained using a 0.5 probability threshold for the classifica-
tion. However, the use of arbitrary cut-off probabilities makes the
computed error rates difficult to interpret and the use of a relevant
pay-off function and prior probabilities to determine the optional
model could lead to some types of bias on the results. Bradley
(1997) gave a way to judge the efficiency with ROC. The receiver
operating characteristics (ROC) graph is useful for organizing
classifiers and visualizing their performance. The ROC graph is a
two-dimensional graph in which the BCA (true positives) rate is
plotted on the Y axis and the 1-GCA (false positives) rate is plotted
on the X axis. The ROC graph depicts relative trade-offs between
benefits (true positives) and costs (false positives).

Most classifiers naturally yield an instance probability or
score, a numeric value that represents the degree to which an
instance is a member of a class. Such a ranking or scoring
classifier can be used with a threshold to produce a discrete
(binary) classifier. Each threshold value produces a different
point in ROC space, and if we join all these points we obtain an
ROC curve. Additionally, as the production process of ROC, it
can be seen that the diagonal line y¼x represents the strategy
of randomly guessing a class. To compare classifiers we want to
Table 7
Correlation matrix of numerical attributes.

Duration Amount Installp

Duration 1.00 0.39 0.01

Amount 0.39 1.00 0.07

Installp 0.01 0.07 1.00

Residence 0.00 0.00 0.00

Age 0.00 0.00 0.00

Existcr 0.00 0.00 0.00

Depends 0.00 0.00 0.01

Total 1.40 1.47 1.09
reduce ROC performance into a single scalar value representing
expected performance. A common method is to calculate the
area under the ROC curve, abbreviated as AUC. Because the AUC
is a portion of the area of the unit square, its value will always
be between 0 and 1. However, because random guessing
produces the diagonal line between (0, 0) and (1, 1), which
has an area of 0.5, no realistic classifier should have an AUC less
than 0.5. In Fawcett’s (2006) study, he compared popular
machine learning algorithms using AUC and found that AUC is
a highly effective way to measure the results of models, and it
can exhibit several desirable properties compared to accuracy.
For example, AUC has increased sensitivity in analysis of
variance tests, is independent to the decision threshold, and
is invariant to a priori class probability distributions. Moreover,
the AUC measure is more sensitive to the errors on the positive
class, because it has important statistical meaning: it is equiva-
lent to the probability that the classifier will rank a randomly
chosen positive instance higher than a randomly chosen nega-
tive instance, considering also all possible thresholds. It is very
meaningful because in the credit scoring problem, cost will
increase if one judges a bad credit as a worthy one.

Because of these reasons, the AUC has been selected as the
main evaluation criteria in this paper, which can be seen in the
ROC pictures, and the BCA and GCA are also be used for checking
the accuracy of these models as a reference.
6. Experiments results

The experimental results presented in this paper are struc-
tured in three subsections. The first subsection describes the
performance difference of original methods between the one with
attributes normalization and the one without. The next section
shows performance of original methods and methods hybridizing
with reducing dimension. Finally, the comparison of accuracy and
ROC is shown in details in the third subsection. The process of
experiments is shown in Fig. 6 as below, data set is described by
round said, variables are with elliptic sections, and the methods
and models are with rectangular.

6.1. Performance difference with attributes normalization

In this section, we focus on the original methods to discuss the
effect of attributes normalization. We use the test data set (1000
Residence Age Existcr Depends

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.01

1.00 0.07 0.01 0.00

0.07 1.00 0.02 0.01

0.01 0.02 1.00 0.01

0.00 0.01 0.01 1.00

1.09 1.11 1.04 1.03
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observations and 20 variables) for this experiment. The method
for normalization is introduced in Section 5.

Table 10 lists the results of these analysis models with and
without normalization. From the results, we can see that the
models with normalization have the same results as the models
without normalization in LG. However, there is a very interesting
thing with SVM. Without normalization the results using SVM are
very bad and the main error occurs in the prediction of the good
credit. We also perform some similar experiments with numerical
variables reduced by PCA and ODR to test the results and these
results are the same: SVM cannot do the right job without
normalization in the good prediction. We propose that this
phenomenon may be caused by dimension curse, because differ-
ent dimension units can get different variance scales, so in the
high space, the distribution of data will be sparse, and the plane
will not be sensitive to some specific points. Until now, however,
we have found no relevant information introduced, so we define it
as ‘Dimensional Interference’. Thus, in the following experiments,
we use only the models with normalization.

6.2. Performance difference with reducing dimensions

Based on the methods for reducing dimensions introduced in
4.D and just as the introduction of cross-validation design above
in Section 5.5, we have four times experiments with the train data
set of 750 observations tagged as D1, and then apply four times
validation with the validation data set of 250 observations tagged
as D2 left by the train data set. Each of these data sets uses equal
proportions of the bad ones. The entire data set is used as the test
data set tagged as D3. The results are the average of these data
sets for four experiments. The cross-validation results of these
models with normalization are summarized in Table 10.

From Table 11, there are several interesting findings. First of all
is that with these models, without reducing dimensions, we can
see all of these models do not get satisfactory accuracy in the
prediction for the bad ones, though OA is really high with the
train data set. Second, the SVM model is a little better and with
the expense of the good customer forecast. There is an over-fitting
problem with logistic regression and SVM. Because logistic
regression is the method based on the variance of variables, it
lacks robustness, from Table 10, we can find it is a very good
model for the train data set, but it is not the same good to the
Table 9
Contribution of Z.

z1 (amount) z2 (existcr) z3 (duration)

VAR (z) 1 0.97 0.53

NP (z) 100% 99% 66%

TNP (z) 29% 58% 74%

100% 99%

66%
73%

65%
56%

49%

29%

58%
74%

86%
96% 99% 100%

0%

20%

40%

60%

80%

100%

120%

z1 z2 z3 z4 z5 z6 z7

NP

TNP

Fig. 5. Accumulative contribution of Z.
validation data set and the test data set. Also there is the same
problem with SVM. Furthermore, with reducing dimensions, it
can be found that there are improvements with SVM in all the
data sets.

6.3. Comparison of models

To conduct a comparison of these models, we design four
groups for comparative test.

First, compare the performance between LG and SVM. We
conduct experiments separately, and the results are shown in the
following Tables 12–14.

From these tables, we can find the performance of SVM is
better than logistic regression, especially for these reducing
dimension models. This point is consistent with recent research.

Second, analyze the effect of dimension reduction for the
logistic regression model. We use the logistic regression model
and the other two reducing dimension logistic regression models
to apply comparative analysis. The results of the comparison can
be found in Tables 15 and 16.

As shown in Tables 15 and 16, on average, the overall
performance of reducing dimension models for prediction is not
better than the original models at a 5% rejection level. This may be
due to the limited variables in the model, so that the linear
relationship is not obvious. In these models, it is still difficult to
say that the model with reducing dimension is significantly
improved.

Furthermore, we compare these results between each model
to analyze the effect of dimension reduction SVM. A comparison
of results is listed in Table 17.

From Table 17, we can find that some models have the same
accuracy, such as HLG–SVM and ODR–SVM; these are in italics.
From the accuracy of BCA, we can determine that the HLG–ODR–
SVM is the best one. HLG–SVM and PCA–SVM are the same at the
accuracy of BCA, and what is more is that HLG–SVM has more
accuracy than ODR–SVM and it is statistically significant. For GCA,
there is not much obvious improvement with these models. We
still can find that PCA–SVM is not a good model for the prediction
accuracy because other models, except HLG–PCA–SVM, can out-
perform it at the 5% significance level. For OA, there is an increase
for SVM and PCA–SVM, so we can infer that dimension reduction
caused the overall increase in accuracy, which mainly comes from
the increase in BCA.

This boost in BCA is mainly dues to reduction of redundant
variables and getting the major characteristic which increased
the model’s predictive power; while due to the reduction of
variables, the amount of information about customers is also
reduced, so it leads to some difficulty in upgrading the good
ones.

Finally, find the best model for credit scoring. Through the first
three discussions on the comparison, we know that SVM can
outperform LG and that reducing dimension does not improve LG
much but improves SVM a lot. Therefore, to further compare the
accuracy of the model with any distribution, we provide the ROC
graphs with these reducing dimension SVMs (PCA–SVM, ODR–
SVM, HLG–SVM, HLG–PCA–SVM, HLG–ODR–SVM) in Fig. 7, which
describes the ROC of the validation dataset and in Fig. 8 ,which is
z4 (installp) z5 (residence) z6 (depends) z7 (age)

0.42 0.34 0.09 0.05

73% 65% 56% 49%

86% 96% 99% 100%



Table 10
Classification of different models with/without normalization.

With normalization

Goal Result LG SVM PCA–SVM ODR–SVM

Bad Bad 160 184 151 161

Bad Good 140 116 149 139

Good Good 624 637 614 623

Good Bad 76 63 86 77

OA 78.4% 82.1% 76.5% 78.4%

Without normalization

Goal Result LG SVM PCA–SVM ODR–SVM

Bad Bad 160 116 149 176

Bad Good 140 184 151 124

Good Good 624 181 233 217

Good Bad 76 519 467 483

OA 78.4% 29.7% 38.2% 39.3%

Segmentation

Original Methods Reducing Dimension

German Data Set

Test Valida
tion Train

LG PCALGPCA-
SVM ODR

Categorical
Attributes

Numerical
Attributes

Comparative Analysis

Hybridizing Methods

LG SVM

T
Test ROC

Attributes
Normalization

Comparative
Analysis

SVM ODR-
SVMLG PCA-

SVMSVM ODR-
SVM

Original
Attributes

Fig. 6. The process of experiments.
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the ROC of the test dataset. Therefore, AUG can be seen clearly
and we can choose the best model more easily.

With the ROC graph, we can see that no model can be
completely superior to other models in any case. The AUGs
between PCA–SVM, ODR–SVM and HLG–PCA–SVM are almost
the same, a little weaker for HLG–SVM and a little stronger in
HLG–ODR–SVM. Upon the above comparison, therefore, HLG–
ODR–SVM is most effective method in this credit scoring
problem.

We can summarize the advantages of orthogonal dimension
reduction models. First of all, reducing dimension has better
accuracy in BCA, which is the key index for credit scoring. Then,
ODR reduces the less correlated variables so enables rapidity of
convergence of the SVM models. Lastly, using the features
extracted by orthogonal dimension reduction hybridizing logistic
regression gives the modeler better explanations.
7. Conclusions

Most recently, researchers have found support vector
machine can provide better performance in the prediction of
credit scoring. However, support vector machine is a black-box
method and lacks rules for selecting good input variables.
Similar to other artificial intelligence methods, they face the
problem of ‘garbage in, garbage out’. Thus SVM is usually
troubled with dimension curse. Focusing on this, we introduce
orthogonal feature extraction techniques with logistic regres-
sion and support vector machine, which has better interpret-
ability for the input variables, reduces the dimension and
accelerates convergence.

Our research follows the next processes. Because SVM is
sensitive to initial condition and training algorithms, we use a
grid search to select parameters for the SVM. Then, we design the
process of reducing dimension with PCA, ODR and HLG to reduce
the redundant variables, thus this resolves the problem of high
multicollinearity to a certain degree. Finally, we experiment on
these methods using the filtered features with the same training
methods to test the effectiveness.

We have also found out in our experiments that SVM cannot
work well with the numerical variables which are not normal-
ized. We call this phenomenon as ‘Dimensional interference’, as
described in Section 6.1 in detail. That may be caused by the
distribution of variables, which stops the kernel function
effectively transform it to the high dimension. So in the high
dimension space, it still cannot be separated by line. However,
there are few references that have discussed this. It still needs
more theoretical study.

To assess the performance of these experiments, we experi-
ment with two types of cross-validation—a small data set and a
complete data set, and use a paired-t test to test the means for
different accuracy between original models and the ones with
reducing dimension. This way can validate the robustness of
the models and give statistical significance for the improve-
ment in accuracy. Because Type I error is more serious in credit
scoring and cannot be arbitrarily cut off, we also use the area
under the ROC graph to judge the effectiveness between
different models. We find that no model can be completely
superior to other models in any case, but SVMs with orthogonal
feature extraction techniques have improved the prediction of
BCA and OA. Obviously, PCA is not a good choice for SVMs
reducing dimension and in total the AUG shows there is a little
success with the orthogonal feature extraction SVM hybridizing
logistic regression.

Based on those assessments there is also an interesting
finding that the lift in SVMs mostly comes from the lift in



Table 16
Pairwise comparsion between LG and ODR–LG.

mean Bad loan Good loan Overall

LG ODR–LG LG ODR–LG LG ODR–LG

0.44 0.47 0.65 0.66 0.59 0.6

t-Value Pooled �1.07 �0.07 �0.17

Satterthwaite �1.07 �0.07 �0.17

Cochran �1.07 �0.07 �0.17

pr49t9 Pooled 0.35 0.95 0.87

Satterthwaite 0.35 0.95 0.87

Cochran 0.4 0.95 0.87

Table 15
Pairwise comparsion between LG and PCA–LG.

mean Bad loan Good loan Overall

LG PCA–LG LG PCA–LG LG PCA–LG

0.44 0.47 0.65 0.68 0.59 0.62

t-Value Pooled �0.78 �0.29 �0.38

Satterthwaite �0.78 �0.29 �0.38

Cochran �0.78 �0.29 �0.38

pr49t9 Pooled 0.48 0.78 0.72

Satterthwaite 0.48 0.79 0.72

Cochran 0.52 0.81 0.73

Table 12
Pairwise comparsion between LG and SVM.

mean Bad loan Good loan Overall

LG SVM LG SVM LG SVM

0.44 0.45 0.65 0.76 0.59 0.66

t-Value Pooled �1.03 �3.39 �3.06

Satterthwaite �1.03 �3.39 �3.06

Cochran �1.03 �3.39 �3.06

pr49t9 Pooled 0.31 o0.05 o0.05

Satterthwaite 0.31 o0.05 o0.05

Cochran 0.31 o0.05 o0.05

Table 13
Pairwise comparsion between PCA–LG and PCA–SVM.

mean Bad loan Good loan Overall

PCA–LG PCA–SVM PCA–LG PCA–SVM PCA–LG PCA–SVM

0.47 0.6 0.68 0.74 0.62 0.7

t-Value Pooled �13.55 �2.12 �4.1

Satterthwaite �13.55 �2.12 �4.1

Cochran �13.55 �2.12 �4.1

pr49t9 Pooled o0.05 o0.05 o0.05

Satterthwaite o0.05 0.05 o0.05

Cochran o0.05 0.05 o0.05

Table 14
Pairwise comparsion between ORD–LG and ODR–SVM.

mean Bad loan Good loan Overall

ODR–LG ODR–SVM ODR–LG ODR–SVM ODR–LG ODR–SVM

0.47 0.62 0.66 0.77 0.6 0.73

t-Value Pooled �14.91 2.02 �5.75

Satterthwaite �14.91 2.02 �5.75

Cochran �14.91 2.02 �5.75

pr49t9 Pooled o0.05 0.05 o0.05

Satterthwaite o0.05 0.05 o0.05

Cochran o0.05 0.05 o0.05
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Table 17
Pairwise comparsion of svm models.

BCA

Mean SVM (mean¼0.45) PCA–SVM(mean¼0.60) ODR–SVM (mean¼0.62) HLG–SVM (mean¼0.60) HLG–PCA–SVM

(mean¼0.63)

PCA–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–ODR–SVM

0.60 0.62 0.60 0.63 0.66 0.62 0.60 0.63 0.66 0.60 0.63 0.66 0.63 0.66 0.66

t-

Value

Pooled �13.21 �14.25 �13.55 �16.30 �18.33 �2.22 0.00 �4.30 �8.42 2.35 �1.47 �5.80 �4.69 �8.91 �5.38

Satterthwaite �13.21 �14.25 �13.55 �16.30 �18.33 �2.22 0.00 �4.30 �8.42 2.35 �1.47 �5.80 �4.69 �8.91 �5.38

Cochran �13.21 �14.25 �13.55 �16.30 �18.33 �2.22 0.00 �4.30 �8.42 2.35 �1.47 �5.80 �4.69 �8.91 -5.38

pr49t9 Pooled o0.0001 o0.0001 o0.0001 o0.0001 o0.0001 0.0371 1.0000 0.0003 o0.0001 0.0284 0.1565 o0.0001 0.0001 o0.0001 o0.0001
Satterthwaite o0.0001 o0.0001 o0.0001 o0.0001 o0.0001 0.0377 1.0000 0.0003 o0.0001 0.0292 0.1587 o0.0001 0.0001 o0.0001 o0.0001
Cochran o0.0001 o0.0001 o0.0001 o0.0001 o0.0001 0.0489 1.0000 0.0012 o0.0001 0.0388 0.1704 o0.0001 0.0001 o0.0001 0.0002

GCA

Mean SVM (mean¼0.76) PCA–SVM (mean¼0.74) ODR–SVM (mean¼0.77) HLG–SVM (mean¼0.78) HLG–PCA–SVM

(mean¼0.76)

PCA–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–ODR–SVM

0.74 0.77 0.78 0.76 0.77 0.77 0.78 0.76 0.77 0.78 0.76 0.77 0.77 0.77 0.77

t-

Value

Pooled 1.79 �1.04 �1.69 0.00 �1.31 �2.25 �3.25 �1.50 �3.00 �0.37 0.97 0.00 1.55 0.44 �1.18

Satterthwaite 1.79 �1.04 �1.69 0.00 �1.31 �2.25 �3.25 �1.50 �3.00 �0.37 0.97 0.00 1.55 0.44 �1.18

Cochran 1.79 �1.04 �1.69 0.00 �1.31 �2.25 �3.25 �1.50 �3.00 �0.37 0.97 0.00 1.55 0.44 �1.18

pr49t9 Pooled 0.0882 0.3121 0.1002 1.0000 0.2031 0.0351 0.0037 0.1475 0.0066 0.7143 0.3424 1.0000 0.1351 0.6619 0.2489

Satterthwaite 0.0886 0.3133 0.1006 1.0000 0.2043 0.0422 0.0054 0.1526 0.0084 0.7145 0.3435 1.0000 0.1353 0.6620 0.2489

Cochran 0.1002 0.3214 0.1221 1.0000 0.2186 0.0462 0.0077 0.1614 0.0120 0.7178 0.3527 1.0000 0.1491 0.6662 0.2612

OA

Mean SVM (mean¼0.66) PCA–SVM (mean¼0.70) ODR–SVM (mean¼0.73) HLG–SVM (mean¼0.73) HLG–PCA–SVM

(mean¼0.72)

PCA–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–PCA–

SVM

HLG–ODR–

SVM

HLG–ODR–SVM

0.70 0.73 0.73 0.72 0.74 0.73 0.73 0.72 0.74 0.73 0.72 0.74 0.72 0.74 0.74

t-

Value

Pooled �3.69 �4.14 �5.18 �4.98 �6.26 �1.97 �2.68 �2.25 �3.93 0.00 0.46 �0.67 0.59 �0.85 �1.54

Satterthwaite �3.69 �4.14 �5.18 �4.98 �6.26 �1.97 �2.68 �2.25 �3.93 0.00 0.46 �0.67 0.59 �0.85 �1.54

Cochran �3.69 �4.14 �5.18 �4.98 �6.26 �1.97 �2.68 �2.25 �3.93 0.00 0.46 �0.67 0.59 �0.85 �1.54

pr49t9 Pooled 0.0010 0.0004 o0.0001 o0.0001 o0.0001 0.0623 0.0137 0.0346 0.0007 1.0000 0.6532 0.5093 0.5636 0.4027 0.1379

Satterthwaite 0.0020 0.0005 o0.0001 o0.0001 o0.0001 0.0694 0.0156 0.0361 0.0009 1.0000 0.6542 0.5106 0.5636 0.4028 0.1380

Cochran 0.0040 0.0017 0.0003 0.0004 o0.0001 0.0752 0.0214 0.0456 0.0023 1.0000 0.6576 0.5162 0.5695 0.4117 0.1519
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Fig. 8. The ROC graph for test dataset.
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Fig. 7. The ROC graph for validation dataset.
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BCA. For a more elaborate model, such as HLG–PCA–SVM and
HLG–ODR–SVM, there always is a decline in GCA, though it is
not statistically significant, which is understandable because of
the reduction of the variable: the model has a power to better
distinguish core features, which may give more results for the
bad ones, but it will lose some information and lower the
specificity for a degree, which decreases the accuracy for some
good cases. Fortunately, GCA, of all the models, is quite
impressive.

Finally, to summarize, this study provides a new way –
orthogonal dimension reduction – to address dimension curse,
and it has an impressive effect in SVM for credit scoring, which is
quite distinct from these methods based on techniques improve-
ment. We discuss the related properties of this method in detail
and test other common statistical approaches – principal compo-
nent analysis and hybridizing logistic regression – to better solve
and evaluate the problem. Moreover, in our opinion, for other
applications such as pattern recognition, this method can also be
used. The results potentially need further discussion, but we
propose that it will prove highly helpful because reducing
dimension methods can lead better interpretations for the vari-
ables selection at a minimum.
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