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Abstract. We propose a two-step machine learning algorithm—the Supervised Adaptive
Group LASSO (SAGLasso) method—that is suitable for constructing parsimonious return
predictors from a large set of macro variables. We apply this method to government bonds
and a set of 917 macro variables and construct a new, transparent, and easy-to-interpret
macro variable with significant out-of-sample predictive power for excess bond returns.
This new macro factor, termed the SAGLasso factor, is a linear combination of merely 30
selected macro variables out of 917. Furthermore, it can be decomposed into three sublevel
factors: a novel housing factor, an employment factor, and an inflation factor. Importantly, the
predictive power of the SAGLasso factor is robust to bond yields, namely, the SAGLasso
factor is not spanned by bond yields. Moreover, we show that the unspanned variation of
the SAGLasso factor cannot be attributed to yield measurement error or macro measure-
ment error. The SAGLasso factor therefore provides a potential resolution to the spanning
controversy in the macro-finance literature.
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1. Introduction
A growing literature has documented that excess returns
of U.S. Treasury bonds are predictable. For instance, the
predictors found thus far include forward rates (Cochrane
and Piazzesi 2005) and yield-based variables constructed
by using filtering (Duffee 2011)1 as well asmacroeconomic
variables (e.g., Cooper and Priestley 2009, Ludvigson and
Ng 2009). One debate in this literature is whether macro-
economic fundamentals have any such predictive power
conditionally over bond yields. Among other things, this
debate has important implications for macro-finance term
structure models (MTSMs; see, e.g., Joslin et al. 2014)

In this paper, we construct a new macro factor with
strong and robust predictive power for bond risk pre-
mia using a two-step machine learning algorithm,
termed the Supervised Adaptive Group LASSO
(SAGLasso) method. We obtain the new macro variable
(referred to as the SAGLasso factor) by applying the
SAGLasso algorithm to a panel of 131 macro variables
(along with six of their lags)—a total of 917 (131 × 7)
macro variables—that are adjusted for data revisions
and publication lags. In addition to its predictive
power, the SAGLasso factor has two other noteworthy

features. One is that the factor is parsimonious, trans-
parent, and easy to interpret. The SAGLasso factor is a
linear combination of merely 30 selected variables out of
917. Furthermore, it can be decomposed into three sub-
level factors: a novel housing factor, an employment fac-
tor, and an inflation factor—which consist of 13, 11, and
6 macro variables, respectively. The other feature is that
the SAGLasso factor is unspanned. Intuitively, this
means that the SAGLasso factor is not subsumed
(spanned) by yield factors in either predictive regres-
sions or MTSMs. As such, the SAGLasso factor can
potentially help resolve the spanning controversy in the
macro-finance literature—the debate on whether
macro-based return predictors are spanned or not.

We begin our analysis by describing the two-step
SAGLasso method, followed by its implementation
using the panel of 131 macro series. We construct
eight sublevel factors—such as the housing, employ-
ment, and inflation factors—in the first step and then
the SAGLasso factor in the second step of the proce-
dure. Note that we control for contemporaneous
yields in both steps to minimize the information over-
lap between the SAGLasso factor and the yield curve.
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Next, we examine the conditional predictive power
of the SAGLasso factor for bond risk premia by testing
two hypotheses. The first one, Spanning Hypothesis I,
states that macro variables have no incremental pre-
dictive power over the current yield curve, the first
three principal components (PCs) of yields. The sec-
ond one, Spanning Hypothesis II—a stronger version
of the first hypothesis—posits that macro variables
have no incremental predictive power over the filtra-
tion generated by the yield curve, proxied by the first
five yield PCs filtered from a dynamic term structure
model. Our results from both in-sample and out-of-
sample tests strongly reject the two spanning hypothe-
ses when the SAGLasso factor is the sole macro variable
used. These results indicate that the SAGLasso macro
factor has significant incremental predictive power,
over price-related information in the Treasury market,
for future bond returns. Furthermore, we provide evi-
dence that this predictability can generate significant
economic gains for investors.

Lastly, as an important application of the SAGLasso
factor, we revisit the spanning controversy. Given that
the SAGLasso factor has strong predictive power for
bond risk premia yet is weakly correlated with the
current yield curve, the new macro factor may shed
light on the controversy. To this end, we examine
three aspects of the controversy using the Joslin et al.
(2014) framework for MTSMs. First, we show that the
conditional predictive power of the SAGLasso factor
is robust to finite sample tests. Second, we focus on
part of the spanning controversy formulated under
the MTSM framework and test the macro-unspanning
hypothesis (MUH), which says that a given MTSM’s
macro state variables are not spanned by its yield fac-
tors.2 We find that when an N -factor MTSM with 4 ≤
N ≤ 6 includes the SAGLasso factor as its sole macro
factor, our likelihood ratio (LR) tests do not reject the
MUH, thereby presenting statistical evidence on the
relevance of unspanned MTSMs. Third, we provide
confirmative evidence that the temporal variation in
the SAGLasso factor is not spannned/explained by
the current yield curve. Importantly, this result is
robust to measurement errors in yields or in the
SAGLasso macro variable itself. Taken together, these
findings suggest that the SAGLasso factor provides a
potential resolution to the spanning controversy.

To summarize, this study contributes to the macro
finance literature in three dimensions. First, it is
among the first to introduce a machine learning algo-
rithm suitable for constructing parsimonious return
predictors from a large set of macro variables and
apply the algorithm to the bond market. Second, using
this algorithm we construct a new macro factor with
strong out-of-sample conditional predictive power for
bond risk premia. Moreover, unlike commonly used
macro variables in the literature, the SAGLasso factor

is unspanned and has tiny measurement error. Third,
due to its unique features, the SAGLasso factor can
address those concerns raised in Bauer and Rude-
busch (2016), Bauer and Hamilton (2018), and Ghysels
et al. (2018) in a unified manner and thus can poten-
tially help resolve the spanning controversy.

While this paper focuses on linear models of predic-
tors, two related studies use nonlinear machine learning
models to construct bond return predictors (but do not
address the spanning controversy). Huang et al. (2016)
find that the macro series selected by SAGLasso is
robust to various nonlinear models they consider. Bian-
chi et al. (2021) study bond risk premia using tree-based
algorithms as well as neural networks and find that
their superb statistical performance translates into large
economic gains. Although these highly nonlinear meth-
ods can accommodate more complex data, the
SAGLasso method can lead to easier-to-interpret return
predictors.3

The remainder of the paper is organized as follows.
Section 2 states Spanning Hypotheses I and II, followed
by Section 3 on the data we use. Section 4 presents the
SAGLasso algorithm, constructs the SAGLasso factor,
and examines its properties. Section 5 revisits the span-
ning controversy. Section 6 concludes. Appendix A lists
some notation and terms frequently used in the paper.

2. Hypotheses on the Predictive Power of
Macro Variables

2.1. Basic Setup
We use continuously compounded annual log returns
on an n-year zero-coupon Treasury bond in excess of
the annualized yield on a one-year zero-coupon
Treasury bond. That is, for t � 1, : : : ,T, excess returns
rx(12n)t,t+12 � r(12n)t,t+12 − y(12)t � ny(12n)t − (n− 1)y(12(n−1))t+12 − y(12)t , where

r(12n)t,t+12 is the one-year log holding-period return on an n-year
bond purchased at the end of month t and sold at the end of

month t + 12 and y(12n)t is the time-t log yield on the n-year
bond.

We consider the following predictive regression
that is often used to investigate the role of the macro-
economy in shaping bond risk premia (e.g., Ludvig-
son and Ng 2009 and Joslin et al. 2014):

rx(12n)t,t+12 � α + β′ZZt + β′FFt + et+12, (1)

where Z represents yield curve factors that are sup-
posed to summarize yield-based information in the
Treasury bond market and F denotes macroeconomic
factors. For example, Z can be factors constructed
from the current yield curve (e.g., yield spreads used
in Campbell and Shiller 1991) or return predictors esti-
mated using historical yields (e.g., the Cochrane-
Piazzesi forward rate factor). Similarly, F can be either
predetermined macroeconomic measures (e.g., the
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gross domestic product (GDP) growth and National
Association of Purchasing Managers’ (NAPM) price
index) or factors extracted from a set of macroeco-
nomic series, such as the Ludvigson and Ng (2009)
factor and the new macro factors constructed in this
study. The remainder of this section focuses on null
hypotheses about the predictive power of macro vari-
ables and whether they are spanned.

2.2. Spanning Hypotheses
The issue of interest is macro factors’ conditional predic-
tive power above and beyond that contained in the yield
curve. Empirically, this issue can be examined based on
the significance of βF in Equation (1), for a given Zt.

It is known that the first three principal components
of yields explain all but a negligible fraction of the
variation in the term structure (Litterman and
Scheinkman 1991). If the current yield curve is sup-
posed to contain almost all the information useful for
determining term premia, we arrive at Spanning
Hypothesis I (a hypothesis formulated and tested by
Joslin et al. 2014 and Bauer and Hamilton 2018):

HS1
0 : in Equation (1), if Zt � PCo

1–3,t, then βF � 0,

where PCo
1−3 � (PCo

1,PC
o
2,PC

o
3), the vector of the first

three PCs of the observed yield curve.
Interestingly, Duffee (2011) finds that the fourth

and fifth PCs are also informative about predicting
bond returns. These factors need to be estimated using
filtering techniques based on both current and histori-
cal yields, however, as the effects of such factors on
cross-sectional yields are too small to dominate meas-
urement error in observed yields. Nonetheless, a
natural question is whether macro variables contain
information about future bond returns that is not cap-
tured by the filtration generated by the yield curve
process. If the “true” yield curve is Markov, as is com-
monly assumed in term structuring modeling, this
question leads to Spanning Hypothesis II:

HS2
0 : in Equation (1), if Zt � PC1–5,t, then βF � 0,

where PC1−5 � (PC1, : : : ,PC5), the vector of the first
five PCs of the noise-uncontaminated yield curve. Given
the predictive power of filtered PC4−5, HS2

0 provides a
stronger test of the conditional predictive power of Ft
than does HS1

0 .4 We also consider an alternative ver-
sion of HS2

0 where Zt is the spanned “cycle” factor of
Cieslak and Povala (2015) in Internet Appendix IA.F.

Small-sample distortions may also take place in
tests of HS1

0 and HS2
0 . Bauer and Hamilton (2018) dem-

onstrate that estimates of standard errors in the t-test
of βF � 0 can be biased because PCs (Zt) are typically
persistent and autoregressive with innovation terms
that are possibly correlated with et+12. They propose a
bootstrap procedure to account for the size distortion

and conclude that much of extant “evidence against
the spanning hypothesis is much weaker than it origi-
nally appeared” (p. 399). Besides the statistical inference
about βF in Equation (1), Bauer and Hamilton (2018) also
study the finite-sample distribution of the increase in R2

when Ft is added to the regression. They show that seri-
ally correlated et+12 due to overlapping observations could
substantially inflate the incremental R2 in small samples,
even if Ft provides no help in predicting bond returns. We
test HS1

0 and HS2
0 by conducting an asymptotic inference

(Section 4.4.2) as well as an MTSM-based finite-
sample inference (Section 5.2).

3. Data
We use monthly data on bond returns and macroeco-
nomic variables over the period January 1964 to
December 2014 in our analysis. The start of our sam-
ple coincides with that of many other studies that also
use the Fama-Bliss yield data set (e.g., Cochrane and
Piazzesi 2005, Ludvigson and Ng 2009). We also con-
duct part of the empirical analysis based on the
1985–2014 subsample because, first, several studies,
including Joslin et al. (2014) and Bauer and Rude-
busch (2016), focus on post-1984 samples; secondly,
some studies argue that the predictive power of macro
variables weakens in more recent samples, especially
post-1984;5 and thirdly, the vintage data coverage for
many time series starts in the early 1980s.

Bond data used in this study consist of monthly pri-
ces for 1- through 5-year zero-coupon Treasury bonds
from the Center for Research in Security Prices (CRSP)
(Fama Risk Free Rates and Fama-Bliss Discount Bond
Yields) for the full sample and self-constructed
monthly zero yields with maturity beyond 5 but up to
10 years for the post-1984 sample. The latter data set
extends the original Fama-Bliss data to longer matur-
ities and is constructed using monthly quotes on indi-
vidual bonds from the CRSP Master File of Treasury
Bonds by following Le and Singleton (2013).6 Zero
yields can then be used to construct annual excess
returns as defined in Section 2.1.

Our macro data set consists of a balanced panel of
131 monthly macroeconomic times series and is an
updated and “real-time” version of the macro data set
used in Stock and Watson (2002, 2005) and Ludvigson
and Ng (2009) that includes one more economic series
no longer available. The main source of our real-time
macro data is the Archival Federal Reserve Economic
Data (ALFRED) database at the Federal Reserve Bank
of St. Louis, which is a collection of vintage versions
of U.S. economic data and contains more monthly
sampled series than does the Philadelphia Fed’s Real-
Time Data Set. Appendix B includes the list of the 131
series in Table B.1 and describes how our macro data
are compiled. The 131 series are organized in a

Huang and Shi: Machine-Learning-Based Return Predictors and the Spanning Puzzle
Management Science, Articles in Advance, pp. 1–25, © 2022 INFORMS 3



hierarchical manner. Such a cluster structure of macro
variables turns out to be useful to model selection. To
that end, following Ludvigson and Ng (2011), we group
the 131 series into eight categories: (i) output (17 series);
(ii) labor market (32 series); (iii) housing sector (10 ser-
ies); (iv) orders and inventories (14 series); (v) money
and credit (11 series); (vi) bond and foreign exchange
(FX)—interest rates or financial (22 series); (vii) prices or
price indices (21 series); and (viii) stock market (4 ser-
ies). Column (2) of Table B.1 reports the group ID of
each series. Section 4.2 shows that some of the eight
groups have stronger predictive power than the others.

4. Adaptive-Lasso-Based Model Selection
In this section, we first describe the Supervised Adaptive
Group LASSO algorithm. We next use the algorithm to
construct a macro factor with low correlations to the yield
curve. We then examine the predictive power of this new
macro factor for future bond returns as well as economic
gains of such bond return predictability.

4.1. Supervised Adaptive Group LASSO
For a T × 1 response vector y, consider the following
penalized least squares (PLS) function:

f PLS(β) � ||y−Xβ||2 +λ
∑N
i�1

|βi | , (2)

where λ ≥ 0 is a tuning parameter used to penalize the
complexity of the model and ||·|| is the ℓ2-norm, namely,
||η|| :� (η′η)1=2, ∀η ∈ RT. The ℓ1-norm penalty |βi | used
here induces sparsity in the solution and defines the
“least absolute shrinkage and selection operator” (Tib-
shirani 1996, p. 267)—this method is usually referred to
as lasso rather than LASSO in the statistics literature.
The lasso estimate is given by β̂

lasso � argminβf PLS(β).
If λ is zero, then β̂

lasso
equals the ordinary least

squares (OLS) estimate, β̂
ols
, provided that the OLS esti-

mation is feasible. Although none of β̂
ols
’s components

are zero, some components of β̂
lasso

will shrink to zero
as λ increases; as a result, the corresponding “useless”
explanatory variables will be dropped and the resulting
regression model will become more parsimonious.

Lasso has several advantages over OLS. First, by
construction, lasso reduces the variance of the pre-
dicted value and thus improves the overall (out-of-
sample) forecasting performance. Second, OLS is
known to have poor finite sample properties when the
dimension of parameters to be estimated is compara-
ble with the number of observations. For instance, in
our case there are 131 macro series along with six of
their lags—917 (131 × 7) macro variables in total—
with only 600 observations for each series. Lasso is
developed to handle such problems. Third, lasso leads
to a much more parsimonious and easier-to-interpret

model than OLS. In fact, the parsimonious or sparse
feature of lasso distinguishes it from ridge regression,
another shrinkage method.

Despite lasso’s popularity, one limitation of the
method is that lasso estimates can be biased. Zou
(2006) shows that this problem can be fixed by using
Adaptive Lasso, which minimizes the following objec-
tive function:

||y − Xβ ||2 +∑N
i�1

λi |βi | , (3)

where different tuning parameters {λi} are introduced
to penalize different βis separately.

We construct a macro-based return predictor in two
steps. In the first step, we utilize the cluster structure
of our macroeconomic panel and consider variable
selection separately within each of the eight groups/
clusters formed in Section 3; that is, we screen out less
important or irrelevant individual economic series
and identify informative ones within each cluster
using adaptive lasso. This is done for three reasons.
First, even variables within the same group may rep-
resent certain quantitative measurements of different
economic sectors. For instance, the Industrial Produc-
tion (IP) Index of Consumer Goods and the IP Index
of Materials (in group i) might be connected to bond
risk premia in a different manner. Second, we want to
select macroeconomic measures that are jointly sig-
nificantly associated with bond risk premia. Third,
adaptive lasso selects only a small number of macro
variables within each cluster and thus allows us to con-
struct parsimonious models, including easy-to-interpret
group macro factors if necessary.

In the second step, we consider all the groups together,
each of which now consists of only those macro variables
selected in step one, and then conduct variable selection at
the group level. We implement this idea using the group
lasso of Yuan and Lin (2006) to deal with situations in
which covariates are assumed to be clustered in groups
(see Appendix C). That is, we select important clusters
using group lasso, thereby identifying influential eco-
nomic sectors in addition to individual variables selected
in the first step.7

We refer to this two-step procedure as the Super-
vised Adaptive Group LASSO algorithm.8 Its key fea-
ture is to consider penalized time-series selection at
both the within-cluster level and the cluster level. We
construct bond return predictors by applying SAGLasso
to a large set of macro series in this study. SAGLasso
should also be useful in similar big data applications in
finance and economics.

4.2. A Macro-Based Return-Forecasting Factor
This subsection implements the two-step SAGLasso
procedure using the average excess return (the bond
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market return), arxt,t+12 � 1
(nb−1)

∑nb
n�2rx

(n)
t,t+12, as the dep-

endent variable, where nb equals 5 (10) when the full
(post-1984) sample is used.

First, we perform model selection in each of the
eight groups of macro series separately, using only
macro variables within the same group along with
their six lagged values. To minimize the information
overlap with respect to yield curve factors, we include
the first three yield PCs in our variable selection but
do not penalize the associated coefficients. Put differ-
ently, in the regression framework of Equation (1), Zt

is PCo
1−3,t but βZ are not penalized; Ft includes contem-

poraneous and lagged macro variables in a given
group and βF are subject to shrinkage. Therefore, at
the intragroup level of group j, we minimize the fol-
lowing objective function:

||arx−Zb〈1〉
Z,j − Fb〈1〉

F,j || 2 +∑7Nj

i�1
λ
j
i

∣∣∣β〈1〉F,j,i

∣∣∣,
where λj

i is the tuning parameter; Nj denotes the num-
ber of economic series contained in group j; β〈1〉F,j,i is the
i-th component of b〈1〉

F, j; and the superscript “〈1〉”
emphasizes that these beta coefficients are obtained in
the first step of the SAGLasso procedure.

This first step allows us to screen out a large portion
of candidate predictors within each group.9 In total,
only 39 out of 131 series remain and have nonzero
coefficients on their contemporaneous and/or lagged
values after the adaptive lasso is applied; the number
of the selected macro variables is only 58 out of 917
(131 × 7). Let X̂

〈1〉
j , j � i, : : : ,viii, denote the set of macro

variables, in group j, that survive from the first stage.
In the second step, we select those relevant X̂

〈1〉
j

using group lasso. Yield PCs are included as control
variables as before. The results from the group lasso
show that the coefficients of groups i, iv, v, vi, and viii
are shrunk to exactly zero; particularly, group vi
(bond and FX) is not selected as a result of controlling
for yield factors. For each of the three selected
groups—labor market (group ii), housing (group iii),
and price indices (group vii)—the group lasso solu-
tion obtained from Equation (C.5) in Appendix C
yields its corresponding group macro factor:

ĝj � X̂
〈1〉
j β̂

〈2〉
j , j � ii, iii,vii, (4)

where j denotes the index of group j whose beta coef-

ficient in step two, β̂
〈2〉
j , is not zero. For ease of refer-

ence, we relabel { ĝj} as { ĝh;h � 1, 2, 3}. They each have a
clear economic interpretation by construction and repre-
sent the employment, housing, and inflation factors,
respectively.

Unlike inflation and employment, which are com-
monly incorporated in MTSMs and are well moti-
vated by certain equilibrium term structure models

(e.g., Wachter 2006), the housing sector has received
little attention in the term structure literature. Given
that ĝ2 is a reflection of the share of aggregate con-
sumption devoted to housing, the link between our
housing factor and the term premium may be moti-
vated using the idea of Piazzesi et al. (2007) that the
expenditure share on housing can drive the equity
risk premium.

Note that each of {ĝh} is parsimonious: ĝ1 includes
five series (11 variables); ĝ2 eight series (13 variables); and
ĝ3 six series (6 variables). In total, out of the original 131
series (917 variables), we identify 19 series (30 variables)
associated with labor market, housing, and prices that
have strongest connection with bond risk premia but the
least overlap with yield PCs. Moreover, 21 selected varia-
bles (out of 30) are lagged, indicating that many series
have a lagged effect on bond risk premia. In particular,
certain types of shocks to consumer prices or the labor
market seem to require a long lag to manifest their impact
on the bond market. The SAGLasso method allows us to
select those important lagged variables and capture their
lag effect on bond risk premia (e.g., ĝ3 includes no current
Consumer Price Index (CPI) and Producer Price Index
(PPI) variables).

Figure 1 provides a visualization of the selected
macro variables. To illustrate the words most relevant
to bond return prediction, the word cloud font is
drawn proportional to the number of selected macro
series (including lagged variables) in which the word
appears. The most notable finding is that new housing
units started and authorized are highly informative
about bond risk premia. In addition to the group level
information, the word cloud also reveals the most
important subsectors within each selected group. For
example, housing market conditions in the western
and northeastern states seem to play a more important
role than that in the Midwest. Also, commodity price
indices appear to be more useful than more general
price indices for bond return prediction.

For purposes of forecasting, term structure model-
ing, and model comparison, we construct a single
aggregate macro predictor using the aforementioned
three group factors:

Ĝ ≡ ∑3
h�1

ĝh: (5)

We refer to this predictor as the SAGLasso (single)
macro factor hereafter. Note that this factor is a linear
combination of only 30 macro variables belonging to
merely 19 different series, yet it has strong predictive
power for bond risk premia as shown below.

4.3. A Recursively Constructed SAGLasso Factor
The SAGLasso factor constructed in Section 4.2 is based
on the full sample and is an unconditional/static factor.
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Below we construct a dynamic SAGLasso factor recur-
sively. To avoid forward-looking bias, we estimate every-
thing using only the information available at the time of
the forecast; namely, we recursively re-estimate both fac-
tors and parameters when the new information becomes
available. We denote a recursively constructed factor by a
tilde (e.g., G̃) to differentiate it from its unconditional
counterpart, denoted by a hat (e.g., Ĝ).

Suppose we want to construct G̃ at month t based on
covariate observations from t – R – 12 to t – 13 and
use the predictor to help forecast annual excess bond
returns at time t + 12, where R > 1 denotes the num-
ber of monthly observations included in the training
period. Namely, in month t � R + 12, we have the follow-
ing information set of monthly observations available:
FR � {Xs−12, {rx(12n)s−12,s, 2 ≤ n ≤ 5}, s � 13, : : : ,R+ 12}.

To examine the importance of macro variables over
time, we focus on rolling-window estimations.10 That
is, we construct G̃ at, say, t+ 1 using observations
from t−R+ 1 to t. We use R � 240 (a 20-year training
period) in this exercise. Figure 2 depicts the impor-
tance of individual macro variables over time. From
the rolling-window prediction at time t, we extract
coefficients of standardized macro variable k and their
lagged values βk,l,t(1 ≤ k ≤ 131,0 ≤ l ≤ 6), and map their
norm

���������∑
lβ

2
k,l,t

√
to the color gradients displayed on the

right side of the figure. At the group level, the selec-
tion results are fairly stable over time: The labor, hous-
ing, and inflation groups are selected in most months.
The only exception is the 2002–2005 period, during which
macro variables in housing and inflation groups dimin-
ished in importance and a couple of variables on

industrial production are selected instead.11 At the indi-
vidual level, the selected macro series are consistent with
the results in Figure 1. Within the labor market group,
nonfarm payrolls in the manufacturing and financial sec-
tors play crucial roles in bond return predictions. In the
inflation group, the commodity price index appears the
most prominent determinant of bond risk premiums.

4.4. Predictive Power of the SAGLasso Factor
4.4.1. In-Sample Evidence. Figure 3 plots the SAGLasso
factor (in darker line) and excess returns on the five-year
bond (in lighter line) in the full sample period, where
shaded areas indicate the periods designated by the
National Bureau of Economic Research as recession peri-
ods. As expected, Ĝ captures the countercyclic compo-
nent in risk premia and leads movements in the realized
bond returns. Indeed Ĝ generally starts rising at the early
stage of economic downturns and peaks during reces-
sions; accordingly, excess bond returns follow and tend
to peak toward the end of (or even after) recessions.

Panel A of Table 1 presents results on the in-sample
predictive power of Ĝ, for 2-, 3-, 4-, and 5-year bonds,
over the full sample. Test statistics are reported for
two different standard errors: Hansen and Hodrick
(1980) method of moments (GMM) (in parentheses)
and Newey and West (1987) (in brackets).12 Columns
(1)–(4) show that Ĝ alone has significant predictive
power for excess returns, with the R2 ranging from
0.35 for the two-year bond to 0.39 for the five-year
one. Columns (5)–(20) indicate that the significance of
Ĝ is robust to each of the following four factors: (a) a

modified Ludvigson and Ng (2009) factor (L̂N
m
), (b)

Figure 1. (Color online) Word Cloud from SelectedMacroeconomic Series

Notes. This figure reports the list of words constituting the names of macroeconomic series that are selected from the SAGLasso algorithm. Font
size of a word is proportional to the frequency with which the word appears in selected macroeconomic variables and their lags.
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the Cochrane and Piazzesi (2005) forward-rate factor
(CP), the Duffee (2011) hidden factor (Ĥ), and the con-
vergence gap (ĈG) defined by Berardi et al. (2021).13

The Ĝ factor, however, does not completely subsume any
of these four factors. The main reason is that whereas Ĝ is
a pure macro factor by construction, L̂Nm includes Treas-
ury and FX variables (group vi), ĈG exploits information
in the Federal Funds rate market, and both ĈP and Ĥ are
purely yield-curve-based factors. For example, Ĝ does not
subsume ĈG for the 2-year bond in the bivariate regres-
sion. This result is intuitive given that by construction, ĈG
is expected to be most informative about short-term bond
premiums, whereas Ĝ is trained on the aggregate bond
market returns rather than a specific-maturity bond. As
another example, if yield PCs are not controlled for in the
second step of the construction of Ĝ, then the resultant Ĝ
subsumes L̂Nm (Huang and Shi 2010).

Panel B reports the results for 2-, 5-, 7-, and 10-year
bonds for the post-1984 subsample. Although the
results on Ĝ are generally similar to their counterparts

in Panel A, the predictive power of the other return
predictors all becomes weaker except for ĈG. For
instance, Ĝ now subsumes L̂Nm under the Hansen
and Hodrick (1980) correction, but ĈG has increased
values of both the t-statistics and incremental R2s.

In summary, Table 1 shows that Ĝ has both significant
unconditional and conditional predictive power for bond
risk premia. Additionally, Ĝ subsumes other macro-based
predictors post-1984. In Internet Appendix IA.B, we also
conduct in-sample spanning tests and find that both HS1

0
andHS2

0 are overwhelmingly rejected.

4.4.2. Out-of-Sample Accuracy. We next examine the
out-of-sample performance of the SAGLasso factor,
focusing on its incremental power above and beyond
yield-curve factors.

We divide the sample into training/estimating and
out-of-sample (testing) portions. The former consists
of R > 1 observations. We use fixed rolling-windows
with R � 240 (R � 180) for the full sample (subsample)
analysis. If P denotes the number of one-step-ahead
predictions, then T � R+ P+ 12, where T is the total
number of observations of macro series. We construct

Figure 2. (Color online) Time Variation of Macro Variable Importance

Notes. This figure presents the norm of coefficients associated with the 131 macroeconomic series and their lagged values in the rolling-window
bond return prediction. The 131 series are divided into eight groups: (G1) output (17 series); (G2) labor market (32 series); (G3) housing sector (10
series); (G4) orders and inventories (14 series); (G5) money and credit (11 series); (G6) bond and FX—interest rates or financial (22 series); (G7)
prices or price indices (21 series); and (G8) stock market (4 series). In each month since January 1984, the macroeconomic panel data over the past
20 years is input into the SAGLasso algorithm to forecast one-year-ahead excess bond returns, and each macroeconomic series could have at
most seven nonzero coefficients (on their contemporaneous and lagged values). The x-axis corresponds to the observation date of excess bond
returns, and color gradients within each column indicate the most impactful (dark blue) to least important (white) variables.
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G̃ recursively month by month using only information
available at the time of estimation as described in Sec-
tion 4.3. Similarly, we recursively re-estimate the
yield-curve factors PCo

1−3,t and PC1−5,t, whose dynamic

versions are denoted P̃Co
1−3,t and P̃C1−5,t.14

Given the dynamic macro and yield-curve factors,
we form our out-of-sample tests of HS1

0 as follows:
Consider a “restricted” benchmark model and an
“unrestricted” model, where the former is the return
forecasting model solely based on P̃Co

1−3,t and the lat-
ter includes P̃Co

1−3,t and G̃t. Given this pair of nested
specifications, we can obtain their time series of real-
ized forecast errors over the entire (out-of-sample)
testing period and then conduct a model comparison.
In other words, the statistical significance of G̃’s incre-
mental predictive power can be assessed by testing
the null hypothesis that the restricted model encom-
passes the unrestricted one. We form tests of HS2

0 simi-
larly by replacing P̃Co

1−3,t with P̃C1−5,t.
Panel A of Table 2 assesses the out-of-sample per-

formance of G̃ with three metrics: the out-of-sample
R2 (Campbell and Thompson 2008) along with its
incremental changes due to G̃t (R2

oos and ΔR2
oos) and

two encompassing tests for nested models—the Erics-
son (1992) ENC-REG and Clark and McCracken
(2001) ENC-NEW tests.15 The R2

oos levels of G̃t show
that G̃t alone captures nontrivial real-time information
on bond risk premiums. Also, the R2

oos increases with
the bond maturity. In fact, the R2

oos for the 2-year bond
is substantially lower than that for the 5-year (10-year)
bond in the full sample (subsample).16

Panel A1 (A2) shows that incorporating G̃t into the
restricted model based on P̃Co

1−3,t (P̃C1−5,t) and a con-
stant improves the model performance substantially in
either the full or sub sample. First, both the ENC-REG
and ENC-NEW test statistics greatly exceed their
asymptotic critical values, regardless of how the asymp-
totic ratio of P/R is specified, thereby rejecting both HS1

0
and HS2

0 . Second, including G̃t also raises R2
oos substan-

tially. For instance, when P̃Co
1−3,t is augmented with

G̃t, ΔR2
oos ranges from 0.271 for the five-year bond to

0.349 for the two-year bond in the full-sample analysis.
Note that the high values of ΔR2

oos here are partially
attributable to the negative R2

oos values under the
restricted models. To summarize, Panel A shows that
the improvement in forecasting accuracy due to G̃ is
statistically significant.

4.4.3. Economic Values. We now examine economic
gains of G̃’s out-of-sample predictive power. We follow
Campbell and Thompson (2008) and assess a mean-
variance investor’s utility gains from trading on G̃
against a benchmark. The investor is assumed to
dynamically allocate his or her portfolio between an N-
year bond (N ≥ 2) and a one-year bond (the risk-free
asset) at a monthly basis, based on the standard optimal
(timing) strategy (e.g., Thornton and Valente 2012).
Given his or her risk aversion coefficient (γ) and the N-
year bond return volatility at time t, the investor imple-
ments the strategy based on his or her out-of-sample
forecasts of theN-year bond risk premium.

We consider three return predictors: G̃t , P̃Co
1−3,

and P̃Co
1−3,t + G̃t . The timing strategies based on these

Figure 3. (Color online) The SAGLasso Factor and Excess Returns on the Five-Year Bond

Notes. This figure presents time variation in the normalized SAGLasso factor as well as excess returns on the five-year bond over the sample
period from January 1964 to December 2013. Shaded bars denotemonths designated as recessions by the National Bureau of Economic Research.
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Ĥ

t
−0

.0
01

0.
00

2
0.
02

1
0.
01

9
(−
0.
34

7)
(0
.1
21

)
(1
.2
41

)
(1
.0
65

)
[−
0.
37

8]
[0
.1
31

]
[1
.3
45

]
[1
.1
39

]
Ĉ
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predictors are denoted SG, SY, and SG+Y, respectively.
In addition, we consider a buy-and-hold strategy,
denoted SBH. We then compare SG against SBH, as
well as SG+Y against SY, to examine incremental wel-
fare gains due to G̃. Specifically, we calculate the cer-
tainty equivalent return (CER) values for each month
in the testing sample and then estimate the following
regression: ug,t − u0,t � ν+ εt, where ug,t and u0,t repre-
sent realized utilities generated by strategies SG and
SBH or SG+Y and SY, respectively. To examine whether
the incremental utility gains are significant or not, we
test the null hypothesis that ν � 0 (denoted Hν

0) using
a variant of the Diebold and Mariano (1995) test, pro-
posed by Harvey et al. (1997), that accounts for auto-
correlation in the forecasting errors.

Panel B of Table 2 reports the annualized CER val-
ues along with the corresponding p-values for Hν

0 (in
angel brackets) with N � 2, 3, 4, 5 for the full sample or
N � 2, 5, 7, 10 for the post-1984 subsample. In each
panel, we consider two risk version levels: γ � 3 as

adopted by Campbell and Thompson (2008) and Gu
et al. (2020) and γ � 5 as adopted by Thornton and
Valente (2012) and Bianchi et al. (2021). We also follow
these studies to limit the portfolio weight on the N-
year bond to lie between 0% and 150%.

Results for SG versus SBH, reported in Panel B1,
indicate that the out-of-sample predictive power of G̃
can generate sizable welfare benefits relevant for
investors. For example, in the case of γ � 5 with n � 5,
SG leads to certainty equivalent gains of 8.62% (4.05%)
relative to SBH for the full (post-1984) sample. Camp-
bell and Thompson (2008) show that the investor’s
welfare gain depends on the relative magnitude of
predictive R2 and the buy-and-hold Sharpe ratio.
Because the R2

oos values of G̃ increase with the bond
maturity and the Sharpe ratio decreases with the
maturity, it is not surprising to find that CER values
become greater as the bond maturity increases.

Results for SG+Y versus SY, reported in Panel B2,
show that the hypothesis Hν

0 is rejected at the 5%
significance level in all but one case (with n � 2 and

Table 2. Out-of-Sample Performance Assessment

Full sample, 1964–2014 Subsample, 1985–2014

Maturity (year) 2 3 4 5 2 5 7 10

Panel A: Statistical significance

R2
oos 0.123 0.187 0.226 0.246 0.033 0.248 0.236 0.205

Panel A1: G̃t+P̃Co
1−3,t vs. P̃C

o
1−3,t

ENC-REG 4.764 4.987 4.831 4.871 3.539 4.570 4.804 5.258
ENC-NEW 191.91 180.91 162.44 147.10 95.33 138.46 128.64 109.49
ΔR2

oos 0.349 0.335 0.296 0.271 0.704 1.029 0.922 0.661

Panel A2: G̃t+P̃C1−5,t vs. P̃C1−5,t
ENC-REG 4.781 5.118 4.823 4.526 3.654 4.831 5.218 4.829
ENC-NEW 180.94 173.49 151.82 130.10 73.93 134.07 130.97 99.17
ΔR2

oos 0.353 0.340 0.292 0.256 0.809 1.026 0.886 0.543

Panel B: Economic significance

Panel B1: Trading on G̃t vs. buy-and-hold

γ � 3 0.343 1.267 2.702 4.478 0.308 2.293 4.083 8.745
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

γ � 5 0.565 2.481 5.289 8.622 0.340 4.053 7.858 16.630
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

Panel B2: Trading on P̃Co
1−3,t + G̃t vs. Trading on P̃Co

1−3,t
γ � 3 0.432 0.510 0.504 0.449 0.579 1.131 1.133 0.750

〈0:008〉 〈0:019〉 〈0:016〉 〈0:012〉 〈0:018〉 〈0:018〉 〈0:009〉 〈0:004〉
γ � 5 0.292 0.289 0.277 0.239 0.407 0.682 0.685 0.450

〈0:022〉 〈0:028〉 〈0:022〉 〈0:019〉 〈0:057〉 〈0:031〉 〈0:009〉 〈0:004〉
Notes. Panel A reports accuracy of out-of-sample forecasts from models with and without the real-time macro factor G̃ as a return predictor.
Benchmark predictors considered include the first three principal components of observed yields (P̃Co

1−3,t) and the first five PCs of the noise-
uncontaminated yield curve (P̃C1−5,t). The rows labeled “ENC-REG” report the out-of-sample t-statistics proposed by Ericsson (1992), and those
labeled “ENC-NEW” report a variant of the ENC-REG statistic proposed by Clark and McCracken (2001); both tests share the same null
hypothesis that the benchmark model encompasses the unrestricted model with excess predictors. “R2

oos” denotes the out-of-sample R2 of
Campbell and Thompson (2008), and the rows labeled “ΔR2

oos” represent the incremental R2
oos due to G̃. Panel B reports the certainty equivalent

gains (in percentage) for a mean-variance investor who selects an N-year bond (N ≥ 2) along with a one-year bond and who uses portfolios
weights potentially depending on G̃-based forecasts. The investor’s risk aversion coefficient γ is assumed to be either three or five. The p-values
of certainty equivalent returns (in angle brackets) are based on an extended version of Diebold and Mariano (1995) test. All out-of-sample
forecasts are formed recursively, with a “training” period of 20 years for the entire sample or that of 15 years in the subsample analysis.
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γ � 5). In other words, incorporating G̃ into the out-of-
sample forecasting of the bond risk premium can lead
to significant utility gains relative to trading on P̃Co

1−3
alone. Because these utility differences have the units
of expected annualized return, they can be roughly
interpreted as the differences in portfolio management
fees. We find that a mean-variance investor with γ � 3
is prepared to pay extra 43–113 basis points (bps) per
year to exploit the additional information as contained
in factor G̃.

4.4.4. Additional Evidence. We further examine the
predictive power of the SAGLasso factor in Internet
Appendix IA.B and summarize the main findings here.

Given that L̂Nm is constructed using the same set of
131 macro series and includes all 131 series as well as
squares and cubes of these macro variables, L̂Nm

serves as a natural benchmark for Ĝ (a linear combi-
nation of 19 series and some of their lagged variables).
We find that Ĝ shows stronger predictive ability than
L̂Nm in both in-sample and out-of-sample analyses.

As mentioned before, the set of 131 macro series we
use is adjusted for both data revisions and publication
lags. One relevant question is the impact of these two
adjustments on bond return predictability. We find
that the return predictability evidence based on Ĝ is
not sensitive to the vintage of macro data used. In con-
trast, publication lags pose much greater “danger”
than data revisions in forecasting future bond returns
based on macro variables, at least in our sample. This
problem can be mitigated straightforwardly, however,
because it is easier to make an adjustment for publica-
tion lags than to figure out preliminary macro data
releases and adjust for data revisions.

To better understand the source of the predictive
power of the SAGLasso factor (Ĝt), we also examine
properties of its three components: the employment
( ĝ1t), housing ( ĝ2t), and inflation ( ĝ3t) factors. As
expected, ĝ1t, ĝ2t, and ĝ3t all have low correlations
with the yield curve factors; as a result, Ĝ is weakly
correlated with PCo

1−3,t and hardly correlated with
PC4,t and PC5,t. The three group factors also show sig-
nificant predictive power, both individually and
jointly. Following Joslin et al. (2014), we also examine
the relative importance of the three group factors
across bond maturity. Our results indicate that rela-
tively speaking, among the three group factors, ĝ1t is
the most important, followed by ĝ3t, and then by ĝ2t,
regardless of the bond maturity.17

The SAGLasso algorithm is implemented using 131
macro variables along with six of their lags. One ques-
tion that arises is the following: are lags of macro vari-
ables essential to the predictive power of the
SAGLasso factor? If yes, what is the optimal number
of lags to be included in our supervised learning? We
repeat the baseline analysis using the 131 macro

variables along with NL of their lags, where
NL � 0, 3, 9, 12. We find that the evidence of the return
predictability is robust to the use of no lags (NL � 0).
Nonetheless, our results suggest that the SAGLasso fac-
tor constructed using the 131 macro variables along
with three or six of their lags has the best performance
in both the in-sample and out-of-sample predictions.
This finding reflects a trade-off between including more
information in the supervised learning and imposing a
denser data structure to enhance the estimation stabil-
ity. Although the baseline SAGLasso factor (with NL �
6) seems to capture more information on long-term
bond premiums, the alternative SAGLasso factor with
NL � 3 outperforms for short-term bonds.

To summarize, Section 4 provides strong evidence
against HS1

0 and HS2
0 . It also shows that rejection of the

these two hypothesis carries significant economic
values.

5. The SAGLasso Factor and the
Spanning Controversy

As an important application of the SAGLasso factor,
we revisit the spanning controversy in this section.
We focus on the three main aspects of the controversy:
first, whether a macro factor’s predictive power is
robust to finite samples as discussed in Section 2; sec-
ond, whether a macro factor is an unspanned pricing
factor in an MTSM; third, whether a macro factor’s
temporal variation can be captured by the yield curve.
We show that the SAGLasso factor can address all
three aspects of the controversy by using the dynamic
term-structure modeling framework.

5.1. The Modeling Framework
Following Joslin et al. (2014), we assume that all risks
in the economy are encompassed by an N -dimen-
sional state vector Xt � (Pt,Ft), where Pt denotes L
linear combinations of (noise-free) zero yields and the
(N -L)-vector Ft represents macro factors as before.
The short rate is an affine function of Xt:

rt � δ0 + δ′1Xt � δ0 + δ′1pPt + δ′1f Ft: (6)

The dynamics of Xt under the risk-neutral measure Q

are assumed to follow a Gaussian process:

Xt �
[
Pt
Ft

]
�
[
μQ
p

μQ

f

]
+
[
ΦQ

pp ΦQ

pf

ΦQ

fp ΦQ

ff

][
Pt−1
Ft−1

]
+Σx ε

Q
x,t,

εQt ~MVN(0, I): (7)

It follows from Duffie and Kan (1996) that the yield of
an m-period zero-coupon bond is

y(m)
t � Am + B′

mXt, (8)

where the expressions for Am and Bm are given in
Internet Appendix IA.C.1. The market price of risk
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follows the “essentially affine” structure of Duffee
(2002, p. 405):

ΣΛt � μP
x − μQ

x + (ΦP − ΦQ)Xt � λ0 + λ1Xt, (9)

where {μP,ΦP} are the P-measure counterparts of
{μQ,ΦQ}.

5.2. Finite Sample Analysis
The statistical inference done in Section 4.4 is based
on asymptotic distributions. We now examine HS1

0
and HS2

0 using a finite-sample analysis. This is neces-
sary because, first, our dependent variables involve
overlapping observations by construction and, sec-
ondly, the first and second PCs of yield curves are
highly persistent in our sample, with first-order auto-
regressive coefficients (ACF) of 0.99 and 0.94, respec-
tively (whereas the ACF of the SAGLasso factor is
only 0.82). Below we first specify the underlying data-
generating processes (DGPs) for HS1

0 and HS2
0 within

the framework described in Section 5.1. We then con-
struct finite-sample distributions of test statistics from
return-forecasting regressions and conduct finite-
sample inference based on such distributions.

5.2.1. Data-Generating Processes for Null Hypotheses.
DGPs under HS1

0 or HS2
0 impose no restrictions on

model parameters and allow them to be estimated
freely. That is, as long as the N ×N yield loading
matrix B ≡ (Bm1 , : : : ,BmN

)′ is invertible, the fraction of
variations in term premia that are associated with
macro factors is also attributable to certain linear combi-
nations of these yields. This type of MTSMs are referred
to as spanned models and denoted by SM(L,N ). If B is
not invertible, then the model is no longer spanned.

Given that Ft�Gt, the DGP for HS1
0 is model

SM(2, 3). To see why, suppose that yield PCs are
defined in terms of k zero-coupon bonds with matur-
itiesM � {m1, : : : ,mk} as follows:

PC1−N ,t �WYM
t ≡W(AM +B′

MXt), W ∈ RN×N :

Because SM(2, 3) is a spanned model, rank(BM) �
N � 3. The resultant invertibility ofWB′

M implies

Et

(
rx(12n)t,t+12

)
� constant+ψ′

12n,12(WB′
M)−1PC1−3,t, (10)

where ψm,12 �mB′
m − (m− 12)B′

m−12(ΦP)12 − 12B12 for
m > 12. This result means that Gt has no incremental
predictive power for annual excess returns in the pres-
ence of PC1−3,t, consistent with HS1

0 . Similarly, the DGP
forHS2

0 is model SM(4, 5).
At the heart of Equation (10) is the theoretical span-

ning of Gt by any three zero yields. In other words, as
long as k ≥N , the covariance matrix of YM

t (stacked
bond yields) has a rank of three. However, empirically
the sample covariance matrices are nonsingular
regardless of the choice of maturitiesM. The standard

interpretation in the literature is that observed yields
(denoted YoM

t ) are contaminated by small transitory
noise, modeled as idiosyncratic “measurement error”
(representing a catch all term for model misspecifica-
tion and other imperfections) as follows:

YoM
t �AM +B′

MXt + ηyt, ηyt ~MVN
(
0,σ2ηy I

)
: (11)

The presence of ηyt is also important in terms of accom-
modating hidden yield factors in spanned models with
N > 3. For instance, consider model SM(4, 5), where
PC1−5,t fully determine the term premia and absorb the
role of Gt. If at least five zero yields (or their linear com-
binations) are assumed to be measured without error,
the full-rank B

′
M indicates that the entire state vector

can be perfectly extracted from the five yields. Conse-
quently, HS2

0 degenerates into a version of HS1
0 that

involves more than three yield PCs. Alternatively, if
measurement error is ubiquitous, it becomes difficult to
extract higher-order PCs, say, PC4,t, from the cross sec-
tion of yields. As such, Equation (11) opens up the pos-
sibility that bond risk premia contain a component
attributable to higher-order PCs, yet hidden from the
observed yield curve, namely, a hidden factor.

5.2.2. Finite-Sample Inference. This subsection reports
finite-sample properties of test statistics under HS1

0 or
HS2

0 , whose underlying DGPs are SM(2, 3) and
SM(4, 5), respectively. We estimate these spanned
models using the full-sample zero-coupon yields with
maturities M � {0:25, 1, 2, 3, 4, 5} to generate samples
over the period 1964–2014 or using extended Fama-
Bliss zero yield data with M � {0:5, 1, 2, 3, 4, 5, 7, 10} to
generate samples for the post-1984 period.

As the inference about HS2
0 requires all yields to be

measured with errors, we implement the model estima-
tion with maximum likelihood using the Kalman filter. To
facilitate the interpretation of the sources of risk compen-
sation, we normalize yield-based state variables Pt to the
first L PCs of zero yields, namely, Xt � (PC1−L,t,Gt). This
rotation also offers OLS-based starting values in the esti-
mation of P-dynamics of Xt. When estimating Q-measure
parameters, we rotate Xt to X∗

t , a state vector that satisfies
the canonical form of Joslin et al. (2013).18

Under each spanning hypothesis, we generate 5,000
artificial data sets from its underlying DGP estimated
with the full or post-1984 sample. In the in-sample
analysis, we obtain the distributions for two t-statistics
(based on HH and NW standard errors, respectively)
and R2.19 In the out-of-sample analysis, we consider
the ENC-REG and ENC-NEW tests and R2

oos.
20 We cal-

culate the 5% critical value and p-value for each set of
statistics, the latter being defined as the frequency of
bootstrap replications in which the test statistics are at
least as large as in the real data.
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Panel A of Table 3 reports finite-sample properties of
test statistics for the full sample. Note from Panels A1
(in-sample) and A2 (out-of-sample) that small-sample
distortions appear more severe underHS1

0 . For in-sample
t-statistics, the “true” 5% critical value ranges from
3.46–4.47, depending on the bond maturity and standard
errors used; for ΔR2 (the incremental in-sample R2 due
to Gt), the 95th percentile of its small-sample distribution
is higher than 9%. However, all of these critical values
are substantially lower than actual statistics obtained
from our data sample. Similarly, note from Panel A2 that
there is strong evidence againstHS1

0 . In particular, all sta-
tistics have bootstrapped p-values less than 1%. Also, the
critical value of ΔR2

oos ranges from 11.7% for the five-year
bond to 13.6% for the two-year bond. Results reported in
Panels A3 (in-sample) and A4 (out-of-sample) of Table 3
illustrate that under HS2

0 , small-sample distributions of
test statistics show even greater deviations from their

asymptotic distributions. For instance, the critical value
for the HH t-statistics under HS2

0 (Panel A3) is at least 0.8
higher than its counterpart under HS1

0 (Panel A1), with
the biggest difference of 1.29 (� 4:75− 3:46) for the five-
year bond. For out-of-sample tests, the ENC-REG critical
value ranges from 4.02 to 4.36, and the ENC-NEW critical
value can be as high as 52.18 in small samples (Panel A4);
but the critical values are still not large enough to overturn
the asymptotic analysis-based rejection of HS2

0 concluded
in Section 4.4.2.

We find similar results for the post-1984 sample
(Panel B of Table 3), although statistics estimated from
the subsample are subject to less severe distortions than
those from the full sample. Particularly, the asymptotic
analysis-based evidence against HS1

0 and HS2
0 post 1984

(Panel B of Table 2) is robust to small samples.
Overall, we draw three conclusions from Table 3.

First, small-sample bias tends to decrease with the

Table 3. Finite-Sample Properties of Test Statistics under Spanning Hypotheses I and II

Panel A: Full sample, 1964–2014 Panel B: Subsample, 1985–2014

Maturity (year) 2 3 4 5 2 5 7 10

Panel A1: In-sample under HS1
0 Panel B1: In-sample under HS1

0

HH 4.937 4.896 4.712 4.509 4.080 3.910 3.784 3.594
〈0:010〉 〈0:003〉 〈0:001〉 〈0:001〉 〈0:003〉 〈0:003〉 〈0:005〉 〈0:005〉

NW 5.064 5.010 4.839 4.654 3.984 3.867 3.714 3.509
〈0:006〉 〈0:003〉 〈0:001〉 〈0:000〉 〈0:001〉 〈0:000〉 〈0:001〉 〈0:001〉

ΔR2 0.108 0.105 0.099 0.091 0.076 0.080 0.066 0.053
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

Panel A2: Out-of-sample under HS1
0 Panel B2: Out-of-sample under HS1

0

ENC-REG 4.285 4.195 4.095 3.940 3.421 3.282 3.158 2.996
〈0:026〉 〈0:018〉 〈0:019〉 〈0:015〉 〈0:045〉 〈0:012〉 〈0:008〉 〈0:004〉

ENC-NEW 51.03 50.39 47.716 43.622 18.710 17.392 15.596 13.439
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

ΔR2
oos 0.167 0.163 0.153 0.139 0.147 0.147 0.122 0.095

〈0:000〉 〈0:001〉 〈0:001〉 〈0:001〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉
Panel A3: In-sample under HS2

0 Panel B3: In-sample under HS2
0

HH 5.054 4.987 4.909 4.783 4.190 3.947 3.782 3.727
〈0:005〉 〈0:002〉 〈0:002〉 〈0:002〉 〈0:004〉 〈0:003〉 〈0:005〉 〈0:007〉

NW 5.202 5.149 5.045 4.962 4.110 3.851 3.745 3.654
〈0:003〉 〈0:001〉 〈0:001〉 〈0:000〉 〈0:001〉 〈0:000〉 〈0:002〉 〈0:003〉

ΔR2 0.117 0.113 0.109 0.103 0.083 0.078 0.070 0.063
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

Panel A4: Out-of-sample under HS2
0 Panel B4: Out-of-sample under HS2

0

ENC-REG 4.326 4.184 4.120 4.046 3.416 3.325 3.229 3.162
〈0:027〉 〈0:017〉 〈0:019〉 〈0:024〉 〈0:038〉 〈0:009〉 〈0:006〉 〈0:004〉

ENC-NEW 56.68 54.53 52.38 49.387 18.516 16.281 15.098 14.050
〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉

ΔR2
oos 0.185 0.177 0.170 0.160 0.161 0.149 0.131 0.119

〈0:002〉 〈0:003〉 〈0:004〉 〈0:007〉 〈0:000〉 〈0:000〉 〈0:000〉 〈0:000〉
Notes. This table presents results based on finite-sample distributions of the statistics that are involved in tests of Spanning Hypotheses I and II
(HS1

0 and HS2
0 ). Five thousand bootstrapped samples are generated from spanned term structure models, SM(L,N ), specified in Section 5.2.1; the

length of each bootstrapped sample is set to be consistent with either the entire data sample (Panel A) or the post-1984 data sample (Panel B).
Results in Panels A1 through B2 (Panels A3 through B4) are obtained frommodel SM(2, 3) (model SM(4, 5)) that satisfiesHS1

0 (HS2
0 ). Test statistics

considered include those computed using the Hansen and Hodrick (1980) GMM covariance estimator (HH) and the Newey and West (1987)
HAC covariance estimator (NW) with 18 lags and the out-of-sample ENC-REG test of Ericsson (1992) and ENC-NEW test of Clark and
McCracken (2001). For each set of test statistics, the 95th percentile of the bootstrap distribution is reported as the 5% critical value and the p-
values (in angle brackets) are the frequency of bootstrap replications in which the test statistics are at least as large as the statistic in the data. The
“ΔR2” and “ΔR2

oos”measures denote the incremental R2 and out-of-sample R2 of Campbell and Thompson (2008), respectively.
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bond maturity. Second, the asymptotic analysis-based
evidence against HS1

0 and HS2
0 (Table 2 and also Inter-

net Appendix IA.B) is too strong to be overturned.
Third, results on descriptive statistics show that none
of the 5,000 artificial samples are able to generate a
ΔR2 or ΔR2

oos that exceeds the actual incremental R2.
We present more robustness analyses in the internet

appendix. Section IA.D shows that model SM(2, 3)
provides a more robust test of HS1

0 than does the DGP
proposed in Bauer and Hamilton (2018). Section IA.E
conducts the Ibragimov and Müller (2010) test of HS1

0
and HS2

0 that is robust to heteroscedasticity, autocorre-
lation, and structural breaks and finds that among the
five yield factors and the SAGLasso factor, the latter is
the only robust bond return predictor. Finally, Section
IA.F examines an alternative version of HS2

0 where the
conditioning variable Zt is the “cycle” factor of Cieslak
and Povala (2015) given that this factor is spanned.
We find that this hypothesis is rejected as well.

To summarize, the results from our finite-sample
analysis strongly reject the two spanning hypotheses,
suggesting that it is very unlikely for a spanned
MTSM to account for the additional predictive power
of the SAGLasso factor as observed in our sample.

5.3. Testing the Macro-Unspanning Hypothesis
The rejection of the spanning hypotheses with Ft � Ĝt
implies that MTSMs incorporating Ĝt may be prefera-
ble to “yields-only” term structure models (YTSMs),
say, for term premium inference. Then a follow-up
question is: Should Ĝt be used as a bond-pricing factor
in an MTSM and if yes, is Ĝt a spanned pricing factor?
We address this question by formulating and testing
the “macro-unspanning hypothesis” (MUH), which
intuitively says that in spite of its predictive power for
bond risk premia, Ĝt is not a spanned pricing factor.

5.3.1. The Macro-Unspanning Hypothesis. In the
MTSM framework described in Section 5.1, the MUH
(arising from the conditions specified in Joslin et al. (2014)
and Bauer and Rudebusch (2016) for unspanned macro
risks) can be stated as follows:

HUS
0 : δ1f � 0 and ΦQ

pf � 0: (12)

Under these so-called “knife-edge” restrictions, the short
rate depends only on Pt (L linear combinations of zero
yields) and the Q-dynamics of Ft as represented by
{μQ

f ,Φ
Q

f p,Φ
Q

f f } are not identifiable without information
from other asset markets. It follows that only risks of yield
PCs are priced in the Treasury market. Namely, the one-
period risk premium, ΣΛt, given below, is L-dimensional:

ΣΛt � μP
p −μQ

p +
[
ΦP

pp −ΦQ
pp , Φ

P
pf

]
Xt � λ0 +λ1Xt: (13)

For convenience, such an N -factor MTSM that satis-
fies HUS

0 is termed an unspanned model and denoted
USM(L,N ).

Note that when L � 3, HUS
0 represents the standard

version of the MUH: macro-based forecasts are not
spanned by the contemporaneous yield curve (equiva-
lent to the case focused on in the Bauer and Rudebusch
(2016) likelihood-ratio tests). When L > 3, HUS

0 denotes
a more general version of the MUH and states that the
predictive ability of macro factors is not spanned by the
filtration generated by the yield dynamics. We examine
both versions of the MUH and thereby estimate both
models SM(L,N ) and USM(L,N ) with L � 3, 4, 5 in
this analysis. To match the data sample used in Joslin
et al. (2014) and Bauer and Rudebusch (2016), we esti-
mate each of these six models using zero yields with
M � {0:5, 1, 2, 3, 4, 5, 7, 10} over the period 1985–2007.

Note also that HUS
0 is not simply the opposite of HS1

0
or HS2

0 . First, although HUS
0 concerns whether a given

macro factor with some explanatory power for term
premia is a pricing factor, HS1

0 and HS2
0 focus on

whether variables outside of the bond market provide
additional explanatory power for bond risk premia. Sec-
ond, term structure modeling implications from the
outcome of testing HS1

0 or HS2
0 are different from those

from the outcome of testing HUS
0 . For instance, suppose

N � 5. Rejecting HUS
0 implies a rejection of model

USM(4, 5), where the alternative model is SM(4, 5);
namely, it is SM(4, 5) versus USM(4, 5). In contrast,
rejecting HS2

0 implies that USM(5, 6) ought to be used to
infer the risk premium component in long-term yields;
accepting HS2

0 means that SM(4, 5) (or YTSM(5)) should
be used; that is, it is SM(4, 5) versusUSM(5, 6).21

5.3.2. Statistical Tests of the Macro-Unspanning Hypo-
thesis. We conduct two tests of HUS

0 . One is a model-
based likelihood ratio test. As there is no analytic
expression available for the limiting distribution
under HUS

0 , we compute the critical values of the test
statistic based on the approximation method used by
Bauer and Rudebusch (2016). However, the approxi-
mation is done conservatively; as a result, this LR test
tends to under-reject HUS

0 .22 To circumvent this prob-
lem and make a more robust inference, we perform
another test of HUS

0 (a model-free test in the spirit of
Bauer and Rudebusch 2016) by directly testing the
yield loadings on the SAGLasso factor without impos-
ing no-arbitrage restrictions. Given the assumption
that all yields are observed with measurement error,
we can focus on the loading matrix B′

M � (B′
L,p,B

′
L, f )

in Equation (11) in this model-free test. To implement
the test, we first estimate Equation (11) with the OLS
and then conduct LR tests of BL,f � 0.

Panel A of Table 4 reports the results from both the
model-based (column (2)) and model-free (column
(3)) tests of HUS

0 , for L �N − 1 � 3, 4, 5. Note from col-
umn (2) that the LR statistics are always smaller than
the 10% critical values, ∀L. An unreported decompo-
sition of the log-likelihood function reveals that the
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difference between SM(L,N ) and USM(L,N ) mainly
derives from the Q-likelihood. This result, as docu-
mented by Bauer and Rudebusch (2016) for L � 3 with
two macro factors, is not surprising as the restrictions in
HUS

0 are not placed on the P-dynamics of USM(L,N ).
However, our test results show that the improved yield
curve fitting of SM(L,N ) over USM(L,N ) is statisti-
cally insignificant, in contrast to Bauer and Rudebusch’s
(2016) finding. The p-values reported in column (3) indi-
cate thatHUS

0 is not rejected by the model-free test either
at the conventional significance level of 5%, ∀L.

Results in Panel A also suggest that the negative
effect of excluding Ĝ from fitting the yield curve
becomes weaker when N increases. This finding is not
surprising: Although the higher-order PCs are consid-
ered to be unimportant in explaining cross-sectional
variations in yields, they help fit the term structure
more or less. Thus, when an additional yield factor is
included in the model, the already limited role of Gt in
the cross section becomes more redundant.

To summarize, when the SAGLasso factor is used
as the sole macro factor of an unspanned model, both
the model-based and model-free tests fail to reject the
MUH. As mentioned before, the main reason for this
finding is that in spite of its strong predictive power
for excess bond returns, the SAGLasso variable is
weakly correlated with yield PCs and is unspanned
(see Section 5.4). See Internet Appendix IA.G for more
applications of unspanned models.

5.4. Is the SAGLasso Factor Unspanned?
To examine whether the yield curve can explain the
temporal variation in the SAGLasso factor, we follow

Joslin et al. (2014) and regress Gt on N observed yield
PCs:

Gt � γ0 + γ1 ·PCo
1−N ,t + εt: (14)

To see whether the regression R2 is low enough to inva-
lidate spanned models, we follow Bauer and Rudebusch
(2016) and evaluate it against its distribution implied
from an N -factor spanned model rather than against
unity. To this end, we consider distributions implied by
“unconstrained” models as well as “constrained”
ones and also allow for macro measurement error,
denoted by ηfwith a standard deviation of σηf . In contrast,
Bauer and Rudebusch (2016) focus on unconstrained
models with zero ηf. Unconstrained models here refer to
MTSMs imposing no constraints on the Sharpe ratio (SR)
of bond returns; such models may imply unrealistic SRs,
as noted in Duffee (2010) and Joslin et al. (2011). MTSMs
with the selected zero restrictions on {λ0,λ1} are referred
to as constrained models and denoted CSM(L,N ) for
spanned models and CUSM(L,N ) for unspanned mod-
els, with L being the number of yield factors included in
the model (see Internet Appendices IA.C and IA.G).

Panel B of Table 4 reports the empirical R2 value and
its 95% confidence interval (in brackets underneath) in
column (5), where the interval is based on 5,000 data
sets simulated from constrained model CSM(N -1,N ),
estimated with and without macro measurement
errors, for N � 4, 5, 6. First, consider the case without
macro measurement errors (ηf � 0), a commonly made
assumption in the macro finance literature (see, e.g.,
Joslin et al. 2014 and Bauer and Rudebusch 2016). The
results show that ∀N , the empirical R2 is around
14.5% and outside of its 95% confidence interval with a

Table 4. Statistical Inference About Unspanned Macro Risks

(1) (2) (3) (4) (5) (6)

Panel A: Tests of unspanning restrictions Panel B: Regressions of Ĝt on PCo
1−N ,t

N Model-based Model-free Macro M.E. R2 AR(1) of residuals

4 28.69 10.05 0.145
〈0:122〉 〈0:074〉 No (ηf � 0) [0.593 0.847]

Yes (ηf ≠ 0) [0.587 0.769] 0.667
5 24.29 8.23 0.145

〈0:185〉 〈0:083〉 No (ηf � 0) [0.506 0.833]
Yes (ηf ≠ 0) [0.459 0.784] 0.667

6 17.55 6.17 0.146
〈0:287〉 〈0:104〉 No (ηf � 0) [0.263 0.651]

Yes (ηf ≠ 0) [0.239 0.630] 0.666

Notes. Panel A reports results from likelihood-ratio tests of the macro-unspanning restrictions (HUS
0 ), given in Equation (12), that are imposed on

anN -factor unconstrained macro-finance term structure model. Its underlying state vector is Xt � (PC1−L,t, Ĝt), where PC1−L,t denotes the vector
of the first L principal components of the noise-uncontaminated yield curve and Ĝt represents the SAGLasso macro factor. Model-based test
statistics (column (2)) are evaluated against the critical values of a χ2-distribution with degrees of freedom equal to (k−N )(N + 1) − 1, where k is
the number of bonds involved. Model-free test statistics (column (3)) are evaluated based on the χ2(k)-distribution. The p-values appear in angle
brackets immediately beneath. Panel B considers the projection of the SAGLasso macro factor (Ĝt) onto the first N PCs of the yield curve
(PCo

1−N ,t). Column (5) shows regression R2s along with two sets of 95% confidence intervals based on 5,000 artificial samples simulated from
model CSM(L,N ) as specified in Section IA.G.1 in the internet appendix (which denotes theN -factor constrainedMTSMwith a spanned Ĝt and
whose state vector Xt � (PC1−L,t, Ĝt)). The confidence intervals in brackets beneath are obtained under either the assumption that there is no
macro measurement error (ηf � 0) or that there is macro measurement error (ηf ≠ 0), as indicated in column (4) where ηf denotes macro
measurement error (“MacroM.E.”). Column (6) reports the first-order serial correlation of residuals.

Huang and Shi: Machine-Learning-Based Return Predictors and the Spanning Puzzle
Management Science, Articles in Advance, pp. 1–25, © 2022 INFORMS 15



p-value (defined as the fraction of the simulated samples
in which the R2 is below the value in the actual data) lower
than 2.5%. That is, the SAGLasso factor indeed has R2 val-
ues too low to be reconcilable with spanned models. We
also evaluate empirical R2s against their distributions
implied from unconstrained models SM(·) and find that
the results are similar to those reported in Panel B. Because
we assume in ourmodel estimation that bond yields are all
measured with error, the aforementioned results provide
evidence that yieldmeasurement error does not account for
the large proportion of unspanned macro variation as
observed in the real data in our sample.23

Next, we assume that ηf ≠ 0. Intuitively, allowing for
macro measurement errors would create a further
unspanned variation of Gt and thus make it more likely
for spanned models to reproduce documented regres-
sion evidence. We re-estimate model CSM(N -1,N )
assuming ηf ≠ 0 and find that the resulting implied R2

distributions are barely distinguishable from their coun-
terparts with zero ηf. For example, the 95% confidence
intervals implied from model CSM(3, 4) with and with-
out macro measurement error are [0:587, 0:769] and
[0:593, 0:847], respectively (column (5) of Table 4). As a
result, even if including ηf shifts the model-implied R2

distribution to the left, the net impact is minimal; that
is, unspanned macro variation observed in our sample
cannot be attributed to macro measurement errors
either. Behind this finding is the tiny standard deviation
of the measurement error in Ĝt: σ̂ηf

< 3 bps for

3 ≤N ≤ 6. Note that as Ĝt is standardized under the
SAGLasso procedures (Section 4.2), σ̂ηf

is negligible

compared with the total standard deviation of Ĝt.
Panel B of Table 4 also includes the results from a span-

ning test applicable to macro factors allowed to contain
“noise” (Duffee 2013): if yields span the true state vector,
the regression in Equation (14) should produce serially
uncorrelated residuals even though the estimated R2 could
substantially deviate from one. The estimated first-order
correlation of residuals of the regression is around 0.67, 4 ≤
N ≤ 6 (column (6)). Given that the serial correlation of Gt

is 0.71, the above result suggests that whatever the regres-
sion is missing cannot be explained bywhite-noise shocks.

Overall, the results of Section 5.4 provide strong evi-
dence that much of the variation in Gt is not captured by
the yield curve. This unspanned nature of the SAGLasso
factor reinforces our earlier conclusion that the factor
carries term premium information independent of the
yield curve. Moreover, this macro variable has very
small measurement error even when it is included as a
spanned factor in a low-dimensional MTSM.

6. Conclusion
There is no consensus in the literature on whether
macro variables have incremental predictive power

for future excess bond returns over contemporaneous
bond yields. However, macro variables considered in
the empirical literature are typically standard ones,
such as measures of real growth and inflation. These
variables either show little unconditional predictive
power for bond risk premia or are highly correlated
with contemporaneous yields and thus have insignifi-
cant conditional predictive power. In this study, we
construct a new macro variable using the Supervised
Adaptive Group LASSO, a machine learning algo-
rithm, from a panel of 917 macro variables (131 macro
series along with six of their lags) that are adjusted for
both data revisions and publication lags. We show
that this new macro variable, termed the SAGLasso
(macro) factor, has strong out-of-sample predictive
power for bond risk premia conditional on the yield
curve. Additionally, this predictability can provide
investors with significant economic gains.

Importantly, the SAGLasso factor is parsimonious,
intuitive, and easy to interpret. Specifically, it is a lin-
ear combination of merely 30 selected variables out of
917 and consists of a novel housing factor, an employ-
ment factor, and an inflation factor. In addition, in
spite of its strong predictive power, the SAGLasso fac-
tor has low correlations with contemporaneous yields
by construction; thus, it is a “pure” macro-based bond
return predictor.

The SAGLasso macro factor also provides a poten-
tial resolution to the spanning controversy in the
macro-finance literature. First, the SAGLasso factor is
not spanned by contemporaneous yields. Second, in
an MTSM with the SAGLasso factor as its sole macro
factor, the hypothesis that it is unspanned by the yield
factors is not rejected. Third, incorporating the
unspanned SAGLasso factor into an MTSM with real-
istic Sharpe ratios has nontrivial economic benefits.
Fourth, the importance of the SAGLasso factor cannot
be attributed to measurement errors in yields or itself.
Furthermore, its measurement error is small.

To summarize, using a machine learning algorithm
we are able to construct a new, parsimonious, and
easy-to-interpret macro variable with strong and
robust predictive power for bond risk premia. In addi-
tion, this new macro factor can potentially help
resolve the spanning controversy in the macro-finance
literature. We use the algorithm to construct macro-
based bond return predictors in this study, but
SAGLasso should also be useful in similar big data
applications in finance and economics. For instance,
we may construct a real-time expectation factor using
the SAGLasso algorithm and examine if the implied
bond risk premia are consistent with those demanded
by investors in history (Piazzesi et al. 2015). This
would allow us to explore an alternative explanation
for the spanning controversy: It is due to the discrep-
ancy between the short-rate expectation of real-time
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investors and the ex post estimates of an econometri-
cian (Cieslak 2018).24 We may also expand the macro
panel data to incorporate survey forecasts of macro
variables, which are shown to provide additional
information in term structure modeling (see, e.g.,
Chernov and Mueller 2012 and Kim and Orphanides
2012). We leave these questions to future research.
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Spanning Hypothesis I (HS1
0 ) Macro variables have no additional predictive power for excess bond returns over the first

three principal components of the observed yield curve
Spanning Hypothesis II (HS2

0 ) Macro variables have no additional predictive power for excess bond returns over the first
five PCs of the noise-uncontaminated yield curve

Macro-unspanning hypothesis (HUS
0 ) So-called knife-edge restrictions given in Equation (12) for a macro-finance term-structure

model to be unspanned
ĈG The convergence gap defined by Berardi et al. (2021)
ĈP The Cochrane and Piazzesi (2005) forward rate factor
Ĝ The (unconditional) Supervised Adaptive Group LASSO macro factor constructed in this

study
G̃ The recursive SAGLasso macro factor constructed in this study
ĝ1, ĝ2, and ĝ3 (Unconditional) SAGLasso group factors constructed in this study, representing employment,

housing, and inflation, respectively
g̃1, g̃2, and g̃3 Recursively constructed ĝ1, ĝ2, and ĝ3

Ĥ The hidden factor proposed by Duffee (2011)
L̂N

m
A modified Ludvigson and Ng (2009) macro-based return predictor

PCo
1−3 � (PCo

1,PC
o
2,PC

o
3) Vector of the first three PCs of the observed yield curve

P̃Co
1−3 Recursively constructed PCo

1−3
PC1−5 � (PC1, : : : ,PC5) Vector of the first five PCs of the noise-uncontaminated yield curve
P̃C1−5 Recursively constructed PC1−5
CSM(L,N ) An N -factor constrained, spanned MTSM—Model SM(L,N ) with restrictions on the model-

implied Sharpe ratios of bond returns
CUSM(L,N ) An N -factor constrained, unspanned MTSM—Model USM(L,N ) with restrictions on the

model-implied Sharpe ratios of bond returns
SM(L,N ) An N -factor spanned model—an N -factor MTSM with L (N − 1) yield factors and one macro

factor (the SAGLasso factor G) that does not satisfy the macro-unspanning hypothesis HUS
0

USM(L,N ) An N -factor unspanned model—an N -factor MTSM with L (N − 1) yield factors and one
macro factor (the SAGLasso factor G) that satisfies HUS

0
YTSM(N ) An N -factor yields-only term-structure model

Appendix A. Notation and Frequently Used Terms
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Appendix B. Macroeconomic Series Used in
the Analysis

Two sets of 131 macroeconomic series are used in our
empirical analysis. The first, the standard one used in the
literature, includes revised macroeconomic data. The sec-
ond set consists of real-time macroeconomic data only—
the macro series adjusted for data revisions and publication
lags.

Table B.1 lists the 131 macroeconomic series and con-
tains the full name (column (4)) of each series, along with
its series number (column (1)), group number (column
(2)), mnemonic—the series label used in the source data-
base (column (3)), short name (column (5)), and data
transformation flag (column (6)). The transformation flag
� 1: no transformation applied to the series; flag � 2: the
first difference applied; flag � 3: the second difference;

Table B.1. Macro Data Description

Series No. Group Mnemonic Description Short name Tran Ĝt Lag Vintage

1 1 a0m052 Personal income (AR, bil. chain 2000 $) PI 5 1 *
2 1 A0M051 Personal income less transfer payments (AR, bil.

chain 2000 $)
PI less transfers 5 1 *

3 4 A0M224R Real consumption (AC) A0m224/gmdc Consumption 5 1 *
4 4 A0M057 Manufacturing and trade sales (mil. Chain 1996 $) M & T sales 5 1
5 4 A0M059 Sales of retail stores (mil. Chain 2000 $) Retail sales 5 1
6 1 IPS10 Industrial production index - total index IP: total 5 1 *
7 1 IPS11 Industrial production index - products, total IP: products 5 1 *
8 1 IPS299 Industrial production index - final products IP: final prod 5 1 *
9 1 IPS12 Industrial production index - consumer goods IP: cons gds 5 1 *
10 1 IPS13 Industrial production index - durable consumer

goods
IP: cons dble 5 1 *

11 1 IPS18 Industrial production index - nondurable consumer
goods

iIP:cons nondble 5 1 *

12 1 IPS25 Industrial production index - business equipment IP:bus eqpt 5 1 *
13 1 IPS32 Industrial production index - materials IP: matls 5 1 *
14 1 IPS34 Industrial production index - durable goods

materials
IP: dble mats 5 1 *

15 1 IPS38 Industrial production index - nondurable goods
materials

IP:nondble mats 5 1 *

16 1 IPS43 Industrial production index - manufacturing (SIC) IP: mfg 5 1 *
17 1 IPS307 Industrial production index - residential utilities IP: res util 5 1 *
18 1 IPS306 Industrial production index - fuels IP: fuels 5 1 *
19 1 PMP Napm production index (PERCENT) NAPM prodn 1 1
20 1 A0m082 Capacity utilization (Mfg) Cap util 2 1
21 2 LHEL Index of help-wanted advertising in newspapers

(1967 � 100; SA)
Help wanted

indx
2 1

22 2 LHELX Employment: ratio; help-wanted ads:no.
unemployed clf

Help wanted/
emp

2 1

23 2 LHEM Civilian labor force: employed, total (thous.,sa) Emp CPS total 5 1 *
24 2 LHNAG Civilian labor force: employed, nonagric.industries

(thous., sa)
Emp CPS nonag 5 1 *

25 2 LHUR Unemployment rate: all workers, 16 years & over
(%,sa)

U: all 2 1 *

26 2 LHU680 Unemploy.by duration: average(mean)duration in
weeks (SA)

U: mean
duration

2 1 *

27 2 LHU5 Unemploy.by duration: persons unempl.less than 5
wks (thous., SA)

U < 5 wks 5 1

28 2 LHU14 Unemploy.by duration: persons unempl.5 to 14 wks
(thous., SA)

U 5–14 wks 5 1

29 2 LHU15 Unemploy.by duration: persons unempl.15 wks +
(thous., SA)

U 15+ wks 5 1

30 2 LHU26 Unemploy.by duration: persons unempl.15 to 26
wks (thous., SA)

U 15-26 wks 5 1

31 2 LHU27 Unemploy.by duration: persons unempl.27 wks +
(thous, SA)

U 27+ wks 5 1

32 2 A0M005 Average weekly initial claims, unemploy. insurance
(thous.)

UI claims 5 1 *

33 2 CES002 Employees on nonfarm payrolls - total private Emp: total 5 1 *
34 2 CES003 Employees on nonfarm payrolls - goods-producing Emp: gds prod 5 1 *
35 2 CES006 Employees on nonfarm payrolls - mining Emp: mining 5 1 *
36 2 CES011 Employees on nonfarm payrolls - construction Emp: const 5 1 *
37 2 CES015 Employees on nonfarm payrolls - manufacturing Emp: mfg 5 1 *
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Table B.1. (Continued)

Series No. Group Mnemonic Description Short name Tran Ĝt Lag Vintage

38 2 CES017 Employees on nonfarm payrolls - durable goods Emp: dble gds 5 1 *
39 2 CES033 Employees on nonfarm payrolls - nondurable goods Emp: nondbles 5 1 *
40 2 CES046 Employees on nonfarm payrolls - service-providing Emp: services 5 1 *
41 2 CES048 Employees on nonfarm payrolls - trade,

transportation, and utilities
Emp: TTU 5 5, 6 1 *

42 2 CES049 Employees on nonfarm payrolls - wholesale trade Emp: wholesale 5 1 *
43 2 CES053 Employees on nonfarm payrolls - retail trade Emp: retail 5 1 *
44 2 CES088 Employees on nonfarm payrolls - financial activities Emp: FIRE 5 0, 1, 2, 3 1 *
45 2 CES140 Employees on nonfarm payrolls - government Emp: Govt 5 1 *
46 2 CES151 Average weekly hours of production or

nonsupervisory workers on private nonfar
Avg hrs 1 0, 2 1 *

47 2 CES155 Average weekly hours of production or
nonsupervisory workers on private nonfar

Overtime: mfg 2 1 *

48 2 aom001 Average weekly hours, mfg. (hours) Avg hrs: mfg 1 0, 2 1 *
49 2 PMEMP Napm employment index (PERCENT) NAPM empl 1 0 1 *
50 3 HSFR Housing starts:nonfarm(1947-58);total farm &

nonfarm(1959-)(thous.,SA
HStarts: Total 5 5 1 *

51 3 HSNE Housing starts:northeast (thous.u.)S.A. HStarts: NE 4 2, 6 1 *
52 3 HSMW Housing starts:midwest(thous.u.)S.A. HStarts: MW 4 2 1 *
53 3 HSSOU Housing starts:south (thous.u.)S.A. HStarts: South 4 1 *
54 3 HSWST Housing starts:west (thous.u.)S.A. HStarts: West 4 1, 3 1 *
55 3 HSBR Housing authorized: total new priv housing units

(thous.,SAAR)
BP: total 4 3, 6 1 *

56 3 HSBNE Houses authorized by build.
permits:northeast(thou.u.)S.A

BP: NE 4 0 1 *

57 3 HSBMW Houses authorized by build.
permits:midwest(thou.u.)S.A.

BP: MW 4 1 *

58 3 HSBSOU Houses authorized by build.
permits:south(thou.u.)S.A.

BP: South 4 0,6 1 *

59 3 HSBWST Houses authorized by build.
permits:west(thou.u.)S.A.

BP: West 4 3,6 1 *

60 4 PMI Purchasing managers’ index (SA) PMI 1 1
61 4 PMNO Napm new orders index (PERCENT) NAPM new

ordrs
1 2

62 4 PMDEL Napm vendor deliveries index (PERCENT) NAPM vendor
del

1 2

63 4 PMNV Napm inventories index (PERCENT) NAPM Invent 1 2
64 4 A0M008 Mfrs’ new orders, consumer goods and materials

(bil. chain 1982 $)
Orders: cons gds 5 2

65 4 A0M007 Mfrs’ new orders, durable goods industries (bil.
chain 2000 $)

Orders: dble gds 5 2

66 4 A0M027 Mfrs’ new orders, nondefense capital goods (mil.
chain 1982 $)

Orders: cap gds 5 2

67 4 A1M092 Mfrs’ unfilled orders, durable goods indus. (bil.
chain 2000 $)

Unf orders: dble 5 1

68 4 A0M070 Manufacturing and trade inventories (bil. chain 2000
$)

M & T invent 5 2

69 4 A0M077 Ratio, mfg. and trade inventories to sales (based on
chain 2000 $)

M & T invent/
sales

2 2

70 5 FM1 Money stock: m1(curr,trav.cks,dem dep,other ck’able
dep)(BIL$,SA)

M1 6 1 *

71 5 FM2 Money stock:m2(M1+o’nite rps,euro$,g/p&b/d
mmmfs&sav&sm time dep(BIL$,

M2 6 1 *

72 5 FM3 Money stock: m3(M2+lg time dep,term rp’s&inst
only mmmfs)(bil$,SA)

M3 6 1 *

73 5 FM2DQ Money supply - M2 in 1996 dollars (BCI) M2 (real) 5 1 *
74 5 FMFBA Monetary base, adj for reserve requirement

changes(MIL$,SA)
MB 6 1

75 5 FMRRA Depository inst reserves:total,adj for reserve req
chgs(MIL$,SA)

Reserves tot 6 1

76 5 FMRNBA Depository inst reserves:nonborrowed,adj res req
chgs(MIL$,SA)

Reserves nonbor 6 1
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Table B.1. (Continued)

Series No. Group Mnemonic Description Short name Tran Ĝt Lag Vintage

77 5 FCLNQ Commercial & industrial loans oustanding in 1996
dollars (BCI)

C&I loans 6 1

78 5 FCLBMC Wkly rp lg com’l banks:net change com’l & indus
loans(BIL$,SAAR)

C&I loans 1 1

79 5 CCINRV Consumer credit outstanding - nonrevolving(G19) Cons credit-
Nonrevolving

6 1

80 5 A0M095 Ratio, consumer installment credit to personal
income (pct.)

Inst cred/PI 2 1

81 8 FSPCOM S&P’s common stock price index: composite
(1941-43 � 10)

S&P 500 5 0

82 8 FSPIN S&P’s common stock price index: industrials
(1941-43 � 10)

S&P: indust 5 0

83 8 FSDXP S&P’s composite common stock: dividend yield
(% PER ANNUM)

S&P div yield 2 0

84 8 FSPXE S&P’s composite common stock: price-earnings ratio
(%,NSA)

S&P PE ratio 5 0

85 6 FYFF Interest rate: federal funds (effective) (% PER
ANNUM,NSA)

FedFunds 2 1

86 6 CP90 Commercial Paper Rate (AC) Commpaper 2 1
87 6 FYGM3 Interest rate: u.s.treasury bills,sec mkt,3-mo.

(% PER ANN,NSA)
3 mo T-bill 2 1

88 6 FYGM6 Interest rate: u.s.treasury bills,sec mkt,6-mo.
(% PER ANN,NSA)

6 mo T-bill 2 1

89 6 FYGT1 Interest rate: u.s.treasury const maturities,1-yr.
(% PER ANN,NSA)

1 yr T-bond 2 1

90 6 FYGT5 Interest rate: u.s.treasury const maturities,5-yr.
(% PER ANN,NSA)

5 yr T-bond 2 1

91 6 FYGT10 Interest rate: u.s.treasury const maturities,10-yr.
(% PER ANN,NSA)

10 yr T-bond 2 1

92 6 FYAAAC Bond yield: moody’s aaa corporate
(% PER ANNUM)

Aaabond 2 1

93 6 FYBAAC Bond yield: moody’s baa corporate
(% PER ANNUM)

Baa bond 2 1

94 6 scp90 cp90-fyff CP-FF spread 1 1
95 6 sfygm3 fygm3-fyff 3 mo-FF spread 1 1
96 6 sFYGM6 fygm6-fyff 6 mo-FF spread 1 1
97 6 sFYGT1 fygt1-fyff 1 yr-FF spread 1 1
98 6 sFYGT5 fygt5-fyff 5 yr-FFspread 1 1
99 6 sFYGT10 fygt10-fyff 10 yr-FF spread 1 1
100 6 sFYAAAC fyaaac-fyff Aaa-FF spread 1 1
101 6 sFYBAAC fybaac-fyff Baa-FF spread 1 1
102 6 EXRUS United states;effective exchange rate(MERM)

(INDEX NO.)
Ex rate: avg 5 2

103 6 EXRSW Foreign exchange rate: switzerland (swiss franc per
U.S.$)

Ex rate: Switz 5 1

104 6 EXRJAN Foreign exchange rate: japan (yen per U.S.$) Ex rate: Japan 5 1
105 6 EXRUK Foreign exchange rate: united kingdom (cents per

pound)
Ex rate: UK 5 1

106 6 EXRCAN Foreign exchange rate: canada (canadian perU.S.) EX rate: Canada 5 1
107 7 PWFSA Producer price index: finished goods (82 � 100, SA) PPI: fin gds 6 1 *
108 7 PWFCSA Producer price index:finished consumer goods

(82 � 100, SA)
PPI: cons gds 6 1 *

109 7 PWIMSA Producer price index:intermed mat.supplies &
components(82 � 100, SA)

PPI: int matls 6 1 *

110 7 PWCMSA Producer price index:crude materials (82 � 100, SA) PPI: crude matls 6 1 *
111 7 PSCCOM Spot market price index:bls & crb: all

commodities(1967 � 100)
Commod: spot

price
6 0 1

112 7 PSM99Q Index of sensitive materials prices (1990 � 100)
(BCI-99A)

Sens matls price 6 0 1

113 7 PMCP Napm commodity prices index (PERCENT) NAPM com
price

1 0 1
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flag � 4: the logarithm; flag � 5: the first difference of loga-
rithm; and flag � 6: the second difference of logarithm.25

We compile our macro data in three steps. First, we
match the panel of 131 series with ALFRED and find that
70 of them are included in the latter. For each of the 70
matched series, we collect its latest nine real-time observa-
tions at the end of each month (we do this because some
macro variables need to be transformed to their second-
order log-differences). However, vintage versions of these
70 series are not balanced and go back to 1964 for only 25
series. Nonetheless, only 3 out of the 19 macro variables
eventually selected by SAGLasso do not have their vintage
data available going back to January 1985. Therefore, the
look-forward biases should have a minimum impact, at
least on our results obtained from the post-1984 sample.

Second, for the 45 incomplete series in ALFRED, we fill
in their missing observations using data over 1964–2007
provided by Ludvigson and Ng (2011) and our manually
updated observations from the Federal Reserve Economic
Data and The Conference Board over the post-2007 period.
As for the 61 series not included in ALFRED, these variables
are presumably not subject to revision.26 We obtain ob-
servations for these 61 series from the aforementioned two
sources. We then adjust all these macro variables for their
publication lags; that is, for each of these time series, we cal-
culate the integer number of months in the time interval
between the end of the period over which it is measured
and its release date. As shown later, such adjustments mat-
ter in our predictability analysis.

Finally, we investigate the time-series properties of these
131 series and determine transformations needed to statio-
narize each of these series. Table B.1 provides a complete

list of the 131 series and, for each series, its data transforms
applied, its publication lag, and the availability of its vin-
tage data.
Column (7) labeled “Ĝt” of Table B.1 shows the values

of a flag indicating which of the 131 macroeconomic series
has a nonzero coefficient for its contemporaneous and/or
lagged values (up to six) in the SAGLasso regression. The
flag value of “0” corresponds to the contemporaneous
variable; the value of “ℓ” denotes lag ℓ (in months),
ℓ � 1, : : : , 6. For instance, macro series #41 (CES048) in
group 2—which measures the employment situation in
the industry sector “Trade, Transportation, and Utili-
ties”—is selected by the SAGLasso approach and has two
variables (out of seven), the lag-5 and lag-6 values of the
series, included in the SAGLasso macro factor Ĝ. In total,
19 out of the 131 series (30 out of the 917 macro variables)
enter the Ĝ factor. Column (8) labeled “Lag” reports each
series’ publication lag (in months), which is defined as the
time between the end of the period over which the series is
measured and its first release date. Note that out of the 131
series, the four in group 8 “stock market” (#81 through #84)
are the only ones without a publication delay. The last col-
umn, labeled “Vintage,” indicates which macro series has
vintage data available, where an asterisk denotes those ser-
ies whose real-time series are available and used in our
empirical analysis. Note that out of the 19 series included in
the Ĝ factor and two additional series (#42 and #53)
included in G̃ (the out-of-sample version of Ĝ), the three
commodity price indices (#111 through #113) are the only
series that have no vintage data available in the ALFRED
database. However, given the nature of these three series,
they should not be subject to revision.

Table B.1. (Continued)

Series No. Group Mnemonic Description Short name Tran Ĝt Lag Vintage

114 7 PUNEW CPI-U: all items (82-84 � 100, SA) CPI-U: all 6 1 *
115 7 PU83 CPI-U: apparel & upkeep (82-84 � 100, SA) CPI-U: apparel 6 1 *
116 7 PU84 CPI-U: transportation (82-84 � 100, SA) CPI-U: transp 6 1 *
117 7 PU85 CPI-U: medical care (82-84 � 100, SA) CPI-U: medical 6 1 *
118 7 PUC CPI-U: commodities (82-84 � 100, SA) CPI-U: comm. 6 1 *
119 7 PUCD CPI-U: durables (82-84 � 100, SA) CPI-U: dbles 6 1 *
120 7 PUS CPI-U: services (82-84 � 100, SA) CPI-U: services 6 1 *
121 7 PUXF CPI-U: all items less food (82-84 � 100, SA) CPI-U: ex food 6 1 *
122 7 PUXHS CPI-U: all items less shelter (82-84 � 100, SA) CPI-U: ex shelter 6 6 1 *
123 7 PUXM CPI-U: all items less medical care (82-84 � 100, SA) CPI-U: ex med 6 1 *
124 7 GMDC PCE,IMPL PR DEFL:PCE (1987 � 100) PCE defl 6 2 *
125 7 GMDCD PCE,IMPL PR DEFL:PCE; durables (1987 � 100) PCE defl: dlbes 6 4 2 *
126 7 GMDCN PCE,IMPL PR DEFL:PCE; nondurables (1996 � 100) PCE defl:

nondble
6 2 *

127 7 GMDCS PCE,IMPL PR DEFL:PCE; services (1987 � 100) PCE defl:
services

6 6 2 *

128 2 CES275 Average hourly earnings of production or
nonsupervisory workers on private no

AHE: goods 6 1

129 2 CES277 Average hourly earnings of production or
nonsupervisory workers on private no

AHE: const 6 1

130 2 CES278 Average hourly earnings of production or
nonsupervisory workers on private no

AHE: mfg 6 1

131 4 HHSNTN U. of mich. index of consumer expectations
(BCD-83)

Consumer
expect

2 1
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Appendix C. Supervised Adaptive Group
LASSO Method

We first briefly review the group lasso (Yuan and Lin
2006). We begin with the following model:

Y � Xβ0 + e, (C.1)

where e is assumed to be a T-dimensional vector of inde-
pendent and identically distributed errors (we will relax
this assumption later). The main assumption of the group
lasso is that some subvectors of the true coefficients β0 are
zero. Let H be an index set representing a class of linear
subspaces of RT, each subspace being spanned by the col-
umns of Xh, where h ∈H. We denote by h ∈H1 the
unknown index set of non-zero subvectors of β0 (i.e.,
H1 � {h : β0h ≠ 0}). Hence, the group lasso involves identify-
ing H1 and estimating β0.

The method is usually implemented by estimating the
following restrictive form:

min
β∈RN

{
||y − Xβ | |2 + λ

∑
h

| |βh ||
}
: (C.2)

Note that expression (C.2) reduces to the lasso when |H| �N
and each h corresponds to the one-dimensional subspace of
RT spanned by the corresponding column of the design matrix
X. In our implementation, we consider the general group lasso
and, more specifically, the adaptive group lasso, as follows:

min
β∈RN

{
||y−Xβ||2 +λ

∑
h
wh ||βh ||

}
: (C.3)

Next, we describe the Supervised Adaptive Group LASSO
algorithm proposed in Section 4.1. The method consists of
two steps.

Step I: For cluster h ∈H, compute β̂
h
—the cluster-wise

adaptive lasso estimate of βh, namely,

β̂
h � argmin

βh

{
||arx−Xhβ

h ||2 +∑
j
λh ∗ ŵhj |βhj |

}
, (C.4)

where arx is a vector of average excess bond returns across
maturity and ŵhj the j-th component of ŵh, the vector of the

(adaptive) weights. Zou (2006) recommends using β̂
OLS

to con-
struct ŵh. As collinearity is a concern in our case, we set

ŵh � 1= | β̂RID
h |γh , where β̂

RID
h is the best ridge regression fit of

arx on Xh. That is, for cluster h we only use macroeconomic
variables within that cluster to construct predictive models.
The optimal pairs of (γh,λh) are determined using five-fold
cross-validations. It is worth noting that tuning parameters λh

are selected for each cluster separately in order to have
different degrees of regularization for different clusters. This
flexibility allows us to uncover subtle structures that otherwise
will be missed when applying the (adaptive) lasso method to
all the series/clusters at the same time.

Note that for each cluster h ∈H, the adaptive lasso β̂
h
has

only a small number of nonzero components. Let β̃
h � β̂

h \ 0,
the vector of nonzero estimated components of β̂

h
given by

the cluster-wise model (C.4), and denote the corresponding
part of Xh by X̃h. In our case, a typical cluster size (dim(Xh))
of 80 variables may reduce to a dim(X̃h) of 8 ~ 10. Namely,

the number of macro variables selected in Step I is signifi-
cantly smaller than the original number to begin with.

Step II: Construct the joint predictive model under the
group lasso constraint as follows:

β̂ � argmin
β

{
||arx − X̃β ||2 + λ

∑
h∈H

wh ||βh||
}
, (C.5)

where X̃ is formed by concatenating the design matrices X̃h.
The parameter λ is also chosen by five-fold cross-validation.
With λ→∞, estimates of some components of β̃h s can be
exactly zero. Following Yuan and Lin (2006), we obtain the sol-
ution in Equation (C.5) efficiently by using the modified least
angle regression selection algorithm of Efron et al. (2004).
In out-of-sample tests conducted in our analysis, tuning

parameters {λh,λ} are selected recursively starting from
the beginning of the test period using cross-validation as
well as information only available at the time of estima-
tion. However, to reduce the bias due to the limited train-
ing sample size, we use 10-fold cross-validation for the
first five years of the out-of-sample testing period (e.g.,
the period 1985–1989 for the full sample). After that, we
go back to standard five-fold cross-validation to restore
the balance between bias and variance. Also, to reduce
the computational burden in the finite-sample analysis
(Section 5.2.2), we select {λh,λ} once for each quarter
rather than for each month; that is, {λh,λ} selected in Jan-
uary are also used to perform SAGLasso model selection
in February and March, until they are reselected in April.
Note that the SAGLasso algorithm differs from the

supervised principal component analysis (SPCA)—another
two-step supervised learning approach—proposed by Bair
et al. (2006) in a biological setting, which has been applied
to inflation forecasts in Bai and Ng (2008).27 For instance,
the former takes into account the underlying cluster struc-
ture of candidate variables, whereas the SPCA does not
consider all the candidates simultaneously. Also, variables
selected in the SPCA are the PCs whose economic inter-
pretations may not be obvious even though they may
have satisfactory prediction performance. Factors con-
structed using SAGLasso, however, are easier to interpret.
Group lasso is also applied by Freyberger et al. (2020) to

identify firm characteristics in shaping expected equity
returns. In their analysis, each group consists of 20 portfolios
associated with (a polynomial function of) one characteristic,
and model selection is done at the group level only. In our
analysis, each group consists of macro variables supposed to
capture the same economic concept, and adaptive lasso is
used within each group (before model selection at the group
level) to further mitigate the curse of dimensionality and
boost the out-of-sample performance.

Endnotes
1 See also Fama and Bliss (1987), Stambaugh (1988), and Campbell
and Shiller (1991).
2 Such models are referred to as unspanned MTSMs. Models with
spanned macro risks are called spanned models.
3 Several other studies focus on the application of machine learning
in the other finance markets. Freyberger et al. (2020) use group lasso
to study the impact of characteristics on expected stock returns. Gu
et al. (2020) compare group lasso with other machine learning
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methods in the context of stock return prediction. Bali et al. (2021)
and He et al. (2021) apply nonlinear machine learning models to
inferring corporate bond risk premiums.
4 The use of PC4−5 rather than PCo

4−5 in HS2
0 is because the latter’s

predictive power is weaker (see Internet Appendix IA.A). The ver-
sion of HS2

0 based on PCo
4−5 is examined in Joslin et al. (2014), Bauer

and Rudebusch (2016), and Bauer and Hamilton (2018).
5 For instance, Bauer and Hamilton (2018) find that the predictive
power of macro variables is substantially weaker in extended sam-
ples that include observations in 2010s; Bauer and Hamilton (2018)
also question the stability of Ludvigson and Ng’s (2009) results for
their macro return predictors across different subsample periods,
especially over the post-1984 sample. Additionally, Duffee (2013,
p. 952) notes that “the predictability associated with Ludvigson and
Ng’s real activity factor may be sample-specific.” Our main results
are also robust to a backward sample extension to 1952, the starting
year of the original Fama-Bliss data (Internet Appendix IA.B).
6 Similarly extended Fama-Bliss data are used in Joslin et al. (2014)
and Bauer and Rudebusch (2016). An alternative data set used in
the literature is constructed by Gürkaynak et al. (2007).
7 Using high-dimension model selection (e.g., Huang et al. (2015)),
Huang et al. (2016) find that the variables selected under the
SAGLasso procedure are robust to a variety of nonlinear models.
Bianchi et al. (2021) also emphasize that it is important to exploit
the cluster structure of the macroeconomic panel and do selection
within groups and across groups. As such, different machine learn-
ing methods seemingly can capture the “common” cluster structure
of the same macro data, at least for the purpose of bond return
predictions.
8 In statistical learning, a problem is considered to be supervised if
the goal is to predict the value of an outcome measure based on a
variety of input measures. See Appendix C for more details of the
SAGLasso procedure.
9 For instance, consider the largest group, the “labor market,” that
originally contains 32 series and thus 32 × 7 (� 224) variables. Col-
umn (7) of Table B.1 indicates that only 5 series (out of 32), #41, #44,
#46, #48, and #49, are selected and that only 11 out of the original
224 variables are selected, including lag-5 and lag-6 of #41; #44
along with its lag-1, lag-2, and lag-3; #46 along with its lag-2; #49
along with its lag-2; and #49 itself.
10 See, for example, Lewellen (2015) who uses a 10-year rolling win-
dow to form OLS-based forecasts of individual stock returns and
finds that the importance of many characteristics diminishes over
time. The procedure using an expanding window to construct G̃
has higher stability than that using the rolling window: ĝ1, ĝ2 and
ĝ3 are the only groups selected. At the individual level, variables
#42 (belonging to “labor market”) and #53 (belonging to “housing
sector”) are the only new variables selected in certain months (and
not included in the unconditional Ĝ factor). The predictive power
of G̃ with the expanding window is closely comparable to that with
the rolling-window.
11 Given that the housing market boom after the early 2000s reces-
sion makes the share of housing consumption less of a concern, it is
unsurprising that variables in the housing sector become less
important in this period. By the same logic, the decline in the
importance of inflation indices can be attributable to the stable infla-
tion uncertainty in 2000s (e.g., Wright (2011)).
12 In an earlier version, we also report the t-statistics with Hodrick
(1992) 1B covariance estimator, which is constructed using the
approximate method of Wei and Wright (2013). The results for Ĝ
are qualitatively similar, but other return predictors tend to lose
their significance with the Hodrick standard errors.
13 In an untabulated analysis, we also consider the output gap fac-
tor (gap) of Cooper and Priestley (2009); the new-order factor (NOS)

of Jones and Tuzel (2013); the Cieslak and Povala (2015) “cycle” fac-
tor based on yield curves and inflation; and a realized jump-mean
factor constructed by Wright and Zhou (2009) (the latter two for the
post-1984 sample only). We find that Ĝ subsumes gap and NOS and
is not driven out by the other two factors. Chernov and Mueller
(2012) uncover a hidden factor that captures inflation expectations
as well as bond risk premia; however, this “survey” factor is present
only in models estimated with survey-based information.
14 To reduce the computational burden, we estimate the parameters
in model YTSM(5) only once using the full sample and then extract
P̃C1−5,t using filtering (not smoothing) from the estimated model.

That is, P̃C1−5,t � ˆPC1−5,t in Section 4.4.2. Using ˆPC1−5,t, however, is
biased against the predictive power of G̃t. Indeed, we find that
using (P̃Co

1−3,t, ˆPC4−5,t) instead of ˆPC1−5,t slightly strengthens G̃t’s
predictive power (untabulated).
15 The precise asymptotic distribution of the test statistics in these
two tests depends on the asymptotic ratio of P/R, denoted by
π ≡ limP,R→infP=R. The Ericsson test critical values from a standard
normal distribution are conservative if π > 0. Given that π ≥ 1, the
simulation results of Clark and McCracken (2001) show that the
95% critical value ranges from 1.584–2.685 for testing one additional
predictor.
16 Bianchi et al. (2021) find that the performance of their macro fac-
tors is also relatively weak for short-term bonds.
17 Bianchi et al. (2021) consider more categories and find that varia-
bles related to the stock and labor market (the output and income,
and orders and inventories) are more important for the short-end
(long-end) of the yield curve. Note that the aggregate bond market
is used to train the group factors {ĝh} here.
18 In other words, instead of directly estimating parameters in
Equations (6) and (7), we estimate another (and shorter) parameter
vector ΘQ

M (defined in Internet Appendix IA.C.1) that encompasses
all bond pricing information.
19 We do not consider the t-statistic based on the Hodrick (1992) stand-
ard errors here because it tends to under-reject the null. Also, Ang and
Bekaert (2007) show that it has desirable small-sample properties.
20 In our baseline finite-sample inference, there is no distinction
between the in-sample factor Ĝt and the real-time factor G̃t. To make
the out-of-sample inference truly out of sample, we perform full-scale
simulations in which the time series of 131 individual macro variables
are generated together with the N -L yield factors. In each trial, the
SAGLasso estimator is implemented on the generated macro varia-
bles to construct macro factors Ĝt and G̃t. These re-simulated Ĝt s
and G̃t s are then used to infer the finite-sample distribution of test
statistics. This exercise guards against the data mining concerns being
translated into the finite-sample analysis. Unreported results indicate
that the properties of test statistics under the full-scale simulations are
similar to those under our baseline simulations.
21 As a result, a test of HUS

0 corresponds to a test of equal forecast
accuracy for non-nested models in the regression setting in Equa-
tion (1). Suppose that Zt � PC1−5,t and Ft � Gt. The question of inter-
est is whether the additional predictive power of Gt is captured by
the six yield factors (i.e., PC1−6,t) or any other six linear combina-
tions of “true” yields, similar to an encompassing test for compar-
ing non-nested models: (PC1−5,t,Gt) versus PC1−6,t.
22 As discussed in Bauer and Rudebusch (2016), although HUS

0
imposes four zero restrictions for the case of L � 3, a comparison of
test statistics with the critical values of a χ2(4)-distribution would
be misleading. Under the approximation adopted by Bauer and
Rudebusch (2016) (detailed in their Section 3.1), test statistics are
evaluated against a χ2-distribution with (k−N )(N + 1) − 1 degrees
of freedom when only one macro variable is used, where k is the
number of bonds involved.
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23 Bauer and Rudebusch (2016) consider regressions similar to
Equation (14) albeit with GRO or INF as the dependent variable;
their simulation results, based on unconstrained models, indicate
that adding small yield measurement error makes spanned models
capable of generating the appearance of unspanned macro informa-
tion in the real data. In an untabulated analysis, we show that the
main reason for such simulation results is, however, that when a
macro variable with a low correlation to the yield curve is used as a
spanned factor, most variation in this macro factor is captured by
high-order yield factors by construction; as a result, a spanned model
with small yield measurement error can reproduce a large amount
of unspanned macro variation even if the macro variable under con-
sideration is unspanned.
24 In an earlier version of this paper (Huang and Shi 2010), we pro-
vide evidence consistent with the potential mechanism suggested by
Duffee (2011). As noted in Cieslak (2018, p. 3269), these different
explanations of the spanning controversy are not, however, mutually
exclusive because its resolution “depends on the particular variables
that the econometrician assumes a part of his/her information set.”
25 Second-order log-differences are the reason for keeping the latest
nine observations at each point of historical time for each of the 70
matched series in ALFRED (see Section 3). To see that, let xs|t denote
the value of a particular macro variable collected for calendar month s
at the end of month t ≥ s. Suppose that this variable is released
with a one-month lag and needs to be log-differenced twice to
attain stationarity. The final data to be included in the SAGLasso
procedures would be {Δ2ln xt−1|t,Δ2ln xt−2|t, : : : ,Δ2ln xt−8|t}, where
Δ2ln xt−1|t � ln xt−1|t − 2ln xt−2|t + ln xt−3|t.
26 This conjecture is partially confirmed by checking observations
of these macro series around the end of 2007. The logic is as follows.
The Ludvigson and Ng (2009) data set ceases its coverage of macro
time series in December 2007. If a specific macroeconomic measure
(not included in ALFRED) is subject to data revision, its observa-
tions for the last couple of months in their data set are likely from
the first (preliminary) and second releases. These observations are
then compared with corresponding ones collected in 2015, which
are definitely from the third (final) release. We find that they are
identical. Regardless, the main findings of this study are not
affected by this conjecture. As mentioned earlier, it turns out that
among those macro series included in the SAGLasso factor, only
three commodity price indices have no vintage data available; these
indices should not be subject to revision.
27 Gibson and Pritsker (2000) use partial least squares to choose risk
factors of fixed-income portfolios. Goto and Xu (2015) apply the
graphical lasso to portfolio selection.
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