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We investigate the cross‐sectional relationship between stock returns and a

number of measures of option‐implied beta. Using portfolio analysis, we show

that the method proposed by Buss and Vilkov (2012, The Review of Financial

Studies, 2525, 3113–3140) leads to a stronger relationship between implied beta

and stock returns than other approaches. However, using the Fama and

MacBeth (1973, Journal of Political Economy, 8181, 607–636) cross‐section
regression methodology, we show that the relationship is not robust to the

inclusion of other firm characteristics. We further show that a similar result

holds for implied downside beta. We, therefore, conclude that there is no robust

relation between option‐implied beta and returns.

KEYWORD S

cross section, downside beta, option‐implied beta, stock returns

J E L C LA S S I F I C A T I ON

G12

1 | INTRODUCTION

The capital asset pricing model (CAPM), developed independently by Sharpe (1964), Lintner (1965), and Mossin (1966),
predicts that the expected return of a stock should be a positive linear function of its market beta, and unrelated to all
other characteristics of the stock. These predictions of the CAPM have been empirically tested in many studies.1

However, these studies typically estimate the unobserved beta using historical data on stock returns. As noted by
McNulty, Yeh, Schulze, and Lubatkin (2002), the use of historical stock returns to estimate market beta is problematic,
since it leads to sensitivity to minor changes in the sample period used.

In an attempt to reduce the estimation error that arises from the use of historical data, a number of studies have
developed estimators of market beta that exploit information about the covariance matrix of stock returns that is
contained in option prices. French, Groth, and Kolari (1983; FGK) introduce a hybrid method to estimate market beta
that combines an estimate of the correlation between the stock return and the market return from historical data with
the ratio of stock‐to‐market implied volatility. Chang, Christoffersen, Jacobs, and Vainberg (2011; CCJV) use both
option‐implied skewness and volatility to estimate market beta. They find that the CCJV beta performs relatively well
and can explain a sizeable proportion of cross‐sectional variation in expected returns. Buss and Vilkov (2012; BV)
compute option‐implied beta using option‐implied correlation and volatility. They find that in support of the CAPM,
there is a monotonically increasing relation between BV beta and returns.

Buss and Vilkov (2012) compare their approach with both historical beta, and other option‐implied betas, using tests
based on portfolio sorting, and conclude that the BV beta performs best. In this paper, we investigate the robustness of these
findings with respect to the inclusion of other firm‐specific characteristics. We employ options on the S&P 500 index and its
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1See, for example, Fama and French (1992), who find that the relation between market betas and average returns disappears during the more recent 1963–1990 period of U.S. stock return data even

when beta is the only explanatory variable.
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constituents to construct option‐implied betas. Using both the portfolio sorting approach and the Fama and MacBeth (1973)
regression approach, we compare the performance of four methods of estimating market beta: The historical beta, the FGK
beta of French et al. (1983), the CCJV beta of Chang et al. (2011), and the BV beta of Buss and Vilkov (2012). We also develop
several measures of option‐implied downside beta based on existing implied beta methods combined with the downside
correlation of Ang, Chen, and Xing (2002) and test the relationship between returns and downside beta using both the
portfolio sorting approach and the Fama and MacBeth (1973) regression approach.

Our main findings are summarized as follows. First, we compare the historical, FGK, CCJV, and BV beta methods
and find that the BV beta measure works best using portfolio sorts. A portfolio trading strategy that sells the stocks
ranked in the bottom quintile by the BV beta and buys the stocks in the top quintile by the BV beta earns positive profit.
This is consistent with the findings of Buss and Vilkov (2012). However, using the Fama and MacBeth (1973) regression
approach, we find that the relationship between option‐implied betas and stock returns is not significant, nor is it
robust to other firm characteristics. Second, we develop measures of implied downside beta corresponding to the FGK
and BV betas. Using portfolio sorts, we show that the BV downside beta has a positive relation with stock returns and
performs better than both the historical downside beta and the FGK downside beta. It also offers an improvement over
the standard BV beta. However, we again show that using the Fama and MacBeth (1973) regression approach, the
relationship between implied downside beta and stock returns is not significant, nor is it robust to other firm‐level
characteristics. We, therefore, conclude that there is no robust, statistically significant relation between option‐implied
betas and stock returns.

Our paper contributes to the literature that examines the relation between market betas and stock returns. First, our
study complements and extends the paper of Buss and Vilkov (2012), who compare these four beta methods using a
portfolio analysis based on options on the S&P 500 index and its constituents from January 1996 to December 2009.
Second, we contribute to the literature on downside beta. Post and Van Vliet (2004), Ang, Chen, and Xing (2006), and
Tahir, Abbas, Sargana, Ayub, and Saeed (2013) report that the downside risk based CAPM outperforms the standard,
variance‐based CAPM.

The remainder of this paper is organized as follows: Section 2 describes the calculation of option‐implied betas and
downside betas. Section 3 describes the data and presents the summary statistics. Section 4 reports the empirical results
for the relation between returns and implied beta, while Section 5 reports the corresponding results for implied
downside beta. Section 6 concludes.

2 | OPTION ‐IMPLIED BETAS AND DOWNSIDE BETAS

2.1 | Historical beta

Let P denote the probability distribution function under the physical measure. The historical beta is calculated as

=β ρ
σ
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P
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where σi,t
P and σM,t

P are the standard deviation of the returns of stock i and the index, respectively, and ρi M, is the
correlation between stock and index returns. Traditionally, the historical beta is calculated using the historical rolling‐
window method.

2.2 | FGK beta

French et al. (1983; FGK) introduce a hybrid estimation method using option‐implied volatility to improve the
performance of beta forecasts. Let Q denote the probability function under the risk‐neutral measure. The FGK implied
beta is defined as

=β ρ
σ

σ
,i,M i,M

i,t
Q

M,t
Q

FGK (2)

HARRIS ET AL. | 95



where σi t
Q
, and σM t

Q
, are the option‐implied volatility for stock i and the index, respectively, and ρi M, is the correlation

between historical stock and index returns.

2.3 | CCJV beta

Chang et al. (2011; CCJV) propose a one‐factor model and assume zero skewness of the market return residual to
propose a new market beta method by using both option‐implied volatility and skewness. The CCJV implied beta is
defined as
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, ,
1/3 serves as a proxy for the risk‐neutral

correlation.

2.4 | BV beta

Buss and Vilkov (2012; BV) propose a measure of option‐implied beta by combining option‐implied correlation with
option‐implied volatility. First, we have one identifying restriction: The observed implied variance of the market index
σ( )M t

Q
,

2 equals the implied variance of a portfolio of all market index constituents i= 1, … , N:
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where σi,t
Q denotes the implied volatility of stock i and ωi represents the weights of stock i in the index.

Empirically, we use stock returns in the market index constituents to identify N × (N− 1)/2 physical correlations ρij t
P
,

and then transform these into implied correlations ρij t
Q
,
2.
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where ρij t
P
, is the expected correlation under the physical measure, and αt denotes the parameter to be identified.

Substituting the implied correlation in Equation 5 into restriction (4), we obtain the following formula to compute αt:
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After estimating implied volatility and correlation, we compute the BV beta as:
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2Buss and Vilkov (2012) note that the transformation must satisfy two technical conditions and two empirical observations. The two technical conditions are: (i) All correlations ρij t
Q
, do not exceed one,

and (ii) the correlation matrix is positive definite. Furthermore, the implied correlations are consistent with two empirical observations: (i) The implied correlation ρij t
Q
, is higher than the correlation

under the physical measure ρij t
P
, , (ii) the correlation risk premium is larger in magnitude for pairs of stocks that provide higher diversification benefits (i.e., low or negatively correlated stocks), and

hence are exposed to a higher risk of losing diversification in bad times characterized by increasing correlations. The second empirical observation is supported by the negative correlation between the

correlation under the objective measure and the correlation risk premium in Mueller, Stathopoulos, and Vedolin (2017).



2.5 | Implied downside betas

We use three methods to estimate downside beta, namely, the historical approach, and approaches based on the FGK
and BV implied betas.3 For the historical downside beta, we follow the semivariance beta approach of Hogan and
Warren (1972). The computation of historical downside betas is as follows:
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<

β E r r r θ
E r r θ

[ | ]
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where the numerator is the second lower partial comoment between the excess return of stock i, ri, and the excess
market return, rM , and measures the comovement between the stock and the market during market downturns. The
threshold, θ is used to define the downside market. In this paper, we set θ to be the mean of the excess market
return, rM .

The principle for modeling implied downside beta is based on modeling downside correlations. Ang et al. (2002)
decompose downside beta into a conditional correlation term and a ratio of conditional total volatility to conditional
market volatility. The downside correlation is given by:
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Following Ang et al. (2002), we combine downside correlation and option‐implied volatility to obtain implied
downside beta. We substitute the historical correlation of the FGK beta in Equation 2 by the downside correlation in
Equation 9 to obtain the FGK implied downside beta:

= −β ρ
σ

σ
.θ

D‐
θ

i,t
Q

M,t
Q

FGK (10)

For the BV beta method, we use individual stock returns satisfying <r r θ[ | ]i M to calculate the physical downside
correlations −ρθ and then obtain the BV implied downside beta using Equations 4.

3 | DATA DESCRIPTION AND SAMPLE STATISTICS

3.1 | Data

We employ daily options on the S&P 500 index and its constituents from OptionMetrics for the period from January
1996 to April 2016, a total of 5,116 trading days. We extract the security ID, expiration date, call or put identifier,
strike price, best bid, best offer, and implied volatility from the option price file. The sample includes both
European and American options. For European options, implied volatilities are calculated using mid‐quotes and
the Black–Scholes formula. For American options, a binomial tree approach that takes into account the early
exercise premium is used. The S&P 500 index serves as a proxy for the U.S. market. The constituents of the S&P 500
index and financial statement data are obtained from COMPUSTAT. The sample period is from January 1995 to
April 2016.4 Daily stock return data are obtained from the center for research in security prices (CRSP). There are a
total of 1,052 firms with both option and stock data over the sample period due to the inclusion and deletion of
stocks in the S&P 500. The treasury bill yield, which is used as a proxy for the risk‐free interest rate, is obtained
from the CRSP treasury database.

As in Bakshi, Cao, and Chen (1997), Bakshi, Kapadia, and Madan (2003), Jiang and Tian (2005), and Chang
et al. (2011), we use the average of the bid and ask quotes for each option contract. We filter out average quotes
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skewness does not require the use of historical stock returns, which are needed to model downside betas or correlations.

4The sample periods for the stock and financial statement data are longer than that for the option data, because we use the data in 1995 to form betas and sort stocks in the first month of 1996.



<$3/8. We also filter out quotes that do not satisfy standard no‐arbitrage conditions. For calls, we require the bid
price to be less than the spot price and the offer price to be at least as large as the spot price minus the strike price.
For puts, we require the bid price to be less than the strike price and the offer price to be at least as large as the
strike price minus the spot price. We eliminate in‐the‐money options because they are less liquid than out‐of‐the‐
money (OTM) and at‐the‐money options. We mitigate the effect of an early exercise premium on our estimations by
eliminating put options with K/S ≥ 1.03 and call options with K/S ≤ 0.97, where K is the strike price and S is the
stock price.

3.2 | Option‐implied moments and betas

Option‐implied moments are extracted from option data with the model‐free approach. We follow the formula of
Bakshi et al. (2003), which is described in the Appendix. Moments are computed by integrating over moneyness. To
calculate the integrals in the formulas precisely, we require a continuum of option prices. In practice, we do not have
these, and we therefore have to approximate them from available option data. As in Carr and Wu (2008) and Jiang and
Tian (2005), for each maturity, we interpolate implied volatilities using a cubic interpolation across moneyness levels
(K/S) to obtain a continuum of implied volatilities. The cubic interpolation is only effective for interpolating between
the maximum and minimum available strike price. For moneyness levels below or above the available moneyness level
in the market, we simply extrapolate the implied volatility of the lowest or highest available strike price. We extract a
fine grid of 1,000 implied volatilities for moneyness levels between 1/3 and 3. We then convert these implied volatilities
into call and put option prices based on the following rule: Moneyness levels (K/S) < 100% are used to generate put
prices and moneyness levels (K/S≥ 1) greater than 100% are used to generate call prices. This fine grid of option prices is
then used to compute the option‐implied moments by approximating the Quad and Cubic contracts shown in Appendix
using trapezoidal numerical integration. It is important to note that this procedure does not assume that the Black–
Scholes model correctly prices options. It merely provides a translation between option prices and implied volatilities.

For each day, we calculate risk‐neutral moments using options with different maturities. We require that a
minimum of two OTM calls and two OTM puts have valid prices. We use linear interpolation to obtain the 180‐day
option‐implied variance and skewness, using both contracts with maturities of more than 180 days and those with
maturities of <180 days.

Panel A of Table 1 presents summary statistics for option‐implied volatility and skewness for the sample period from
January 1996 to April 2016. The average S&P 500 index volatility is 0.23 and the average stock volatility is 0.37. The
average S&P 500 index skewness is −1.66, which is more negative than the average stock skewness of −0.50. This shows
that the distribution of both index and stock returns is negatively skewed. Overall, the risk‐neutral distribution of index
returns is more skewed than the risk‐neutral distribution of individual stock returns.

Panel B of Table 1 presents summary statistics for the four measures of standard beta. We find that, for all four
measures, the mean value of beta is around unity. The mean weighted market beta theoretically must be equal to 1. The
mean historical beta is 1.02, the mean FGK beta is 0.84, the average CCJV beta is 0.88, while the mean BV beta is 1.07.
Thus, the historical and BV beta measures are almost unbiased, but the FGK and CCJV betas appear to be biased
downwards. The median historical, FGK, and CCJV betas is <1, while the median BV beta is around 1. Panel C reports
summary statistics for the three measures of downside beta. The mean historical downside beta is 1.02, the mean BV
downside beta is 1.09, while the mean FGK downside beta is 0.65. We expect that the estimation errors of different beta
measures will lead to different beta‐return relationship. Panel D of Table 1 reports the correlation coefficients between
the different measures of standard and downside beta. Each measure of standard beta is generally highly correlated
with the corresponding measure of downside beta. Across the different measures, the FGK has a high correlation with
the historical and BV measures. The CCJV measure has a much lower correlation with the other measures.

4 | OPTION ‐IMPLIED BETAS AND THE CROSS SECTION OF STOCK
RETURNS

4.1 | Portfolio analysis

To study the risk‐return relationship, we perform the portfolio analysis following the early study of Jensen, Black, and
Scholes (1972) and the recent study of Buss and Vilkov (2012). We sort the individual securities in the S&P 500 index
into five groups at the end of each month, and separately for each beta method, according to their preranked betas. The
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preranked betas are estimated using previous 180‐day (126‐trading day) daily returns at the end of month t. These
stocks are ranked from low to high on the basis of estimated betas and are assigned to five portfolios with equal
numbers of securities in each portfolio; the 20% of the stocks with the smallest betas are assigned to the first portfolio,
the 20% of the stocks with the biggest betas are assigned to the fifth portfolio and so on. For each beta methodology, and
for each portfolio, we calculate the beta and the value‐weighted and equally weighted return in month t+ 1. This
procedure is repeated for all months during the sample period from January 1996 to April 2016. Finally, we calculate
the average values of beta and returns for each portfolio over all months.

Table 2 provides the results for the beta‐sorted quintile portfolios from January 1996 to April 2016. Panel A reports
the average portfolio betas and returns sorted on historical beta. For the value‐weighted portfolios, the difference
between the fifth and first portfolio returns (the high–low return spread) is 0.14% per month, while for the equally
weighted portfolios, the return spread is 0.28% per month. This is consistent with Fama and MacBeth (1973) and Jensen
et al. (1972), who find evidence in support of a positive risk‐return relationship as predicted by the CAPM. However, the
positive beta‐return relation is not significant at the 5% level for either the value‐weighted or equally weighted
portfolios. Panel B reports results for the quintile portfolios sorted on the FGK beta. A long‐short portfolio buying the
stocks in the highest beta quintile and shorting the stocks in the lowest beta quintile produces positive average returns.
For the value‐weighted portfolios, the average high–low return spread is 0.01% per month, while for the equally
weighted portfolios, it is 0.19% per month. Panel C reports results for the quintile portfolios sorted on the CCJV beta.
We find that the high–low return spread is negative, but the t statistics for the high–low return spread indicate that the
difference is not significant.5 The results for the portfolios sorted on the basis of the BV beta are shown in Panel D. The
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TABLE 1 Descriptive statistics

Observation Mean SD 25th Median 75th

Panel A. Option‐implied moments

S&P 500 volatility 244 0.23 0.07 0.18 0.22 0.27

S&P 500 skewness 244 −1.66 0.53 −2.01 −1.60 −1.25

Stock volatility 98,060 0.37 0.16 0.26 0.33 0.43

Stock skew 98,060 −0.50 0.41 −0.71 −0.48 −0.24

Panel B. General betas

Historical 125,388 1.02 0.48 0.71 0.96 1.25

FGK 97,456 0.84 0.39 0.59 0.80 1.04

CCJV 98,060 0.88 0.68 0.70 0.93 1.19

BV 95,661 1.07 0.37 0.83 1.02 1.26

Panel C. Downside betas

Historical 122,125 1.02 0.48 0.71 0.96 1.26

FGK 95,678 0.65 0.35 0.42 0.63 0.85

BV 95,678 1.09 0.35 0.85 1.03 1.27

Panel D. Correlations betas

Historical FGK CCJV BV His D FGK D

FGK 0.69

CCJV 0.14 0.32

BV 0.64 0.65 0.20

His D 0.92 0.63 0.13 0.60

FGK D 0.50 0.74 0.24 0.47 0.60

BV D 0.51 0.53 0.21 0.87 0.55 0.57

Note. The table reports descriptive statistics on monthly risk‐neutral volatility and skewness for the S&P 500 index and its constituents, the general beta
methods and downside beta methods. The sample period is from January 1996 to April 2016. The table reports the number of observation, mean, standard
deviation (SD) and the 25th, median and 75th percentiles. Panel A reports summary descriptive on risk‐neutral volatility and skewness. Panel B reports
summary descriptive on the general beta methods. Panel C presents summary statistics on the downside beta methods. Panel D provides the correlation matrix
of different betas.

5Chang et al. (2011) run a cross‐section regression of stock returns on the CCJV betas year by year and find that for some years the slopes of the CCJV beta are negative.



high–low return spread is 0.37% per month for the value‐weighted portfolios and 0.35% per month for the equally
weighted portfolios. Neither of these values is statistically significant at conventional levels observed from the Newey
and West (1987) t statistics. Overall, the portfolio analysis shows that the BV beta gives the biggest high–low return
spread compared with the other beta methods.

We perform a formal monotonic relation (MR) test of the risk‐return relation, applying the nonparametric technique
of Patton and Timmermann (2010). The results of the MR test, with P values obtained from time‐series block
bootstrapping, are shown in the last column of Table 2. If the high–low return spread is positive (negative), the null
hypothesis of the MR test is that there is no relation or a weakly decreasing (increasing) relation between beta and
returns, while the alternative hypothesis is that there is an increasing (decreasing) relation between beta and returns.
All MR P values are greater than 10%, suggesting that there is no significant evidence to support the existence of a
monotonically increasing relation between beta and returns.

To summarize, Table 2 shows that the relationship between the historical, FGK and BV betas, and stock
returns is positive, but not statistically significant. The BV beta gives the biggest value‐weighted and equally
weighted return spread between the extreme portfolios, which is consistent with the findings of Buss and
Vilkov (2012).

Figure 1 shows that all beta methods display a noisy beta‐return relation across different quintiles for the
value‐weighted returns. For the value‐weighted portfolios, the return difference between the extreme quintile
portfolios is more pronounced for the BV and historical betas than for the FGK and CCJV beta methods.
The return spread using BV beta is more pronounced than that using historical beta. The plot of the BV beta and
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TABLE 2 Portfolio analysis sorted by different beta methods

Low 2 3 4 High High–low MR_p

Panel A. Historical beta

Beta 0.48 0.75 0.95 1.18 1.72 1.24 –
vw‐return 0.67 0.83 0.73 0.91 0.80 0.14 0.49

(3.04) (3.44) (2.41) (2.69) (1.57) (0.31) –
ew‐return 0.82 0.97 1.03 1.15 1.10 0.28 0.21

(3.60) (3.46) (3.11) (3.02) (1.95) (0.59) –
Panel B. FGK beta

Beta 0.41 0.64 0.79 0.96 1.32 0.91 –
vw‐return 0.68 0.73 0.89 0.81 0.69 0.01 0.29

(3.00) (2.77) (2.96) (2.17) (1.24) (0.02) –
ew‐return 0.79 0.85 1.09 1.20 0.98 0.19 0.52

(3.27) (2.94) (3.13) (2.90) (1.69) (0.41) –
Panel C. CCJV beta

Beta 0.00 0.74 0.92 1.10 1.48 1.48 –
vw‐return 0.85 0.76 0.81 0.71 0.76 −0.09 0.25

(3.31) (2.99) (2.78) (1.96) (1.49) (−0.25) –
ew‐return 1.23 0.98 1.09 0.85 0.73 −0.51 0.65

(3.75) (3.51) (3.35) (2.22) (1.40) (−1.62) –
Panel D. BV beta

Beta 0.66 0.86 1.01 1.19 1.62 0.96 –
vw‐return 0.63 0.79 1.09 0.84 1.00 0.37 0.66

(2.57) (2.85) (3.57) (2.19) (1.74) (0.79) –
ew‐return 0.74 0.96 1.11 1.17 1.08 0.35 0.30

(2.85) (3.16) (3.29) (2.89) (1.76) (0.68) –
Note. The five quintile portfolios are sorted by different betas over the sample period from January 1996 to April 2016. At the end of each month, we sort the
stocks into quintiles based on their betas. The first portfolio then contains the stocks with the lowest market beta, while the last portfolio contains the stocks
with the highest market beta. We then compute the value‐weighted and equally weighted monthly returns over the next month for each quintile portfolio,
month and beta methodology. The table reports the time‐series average of betas and the value‐weighted (vw‐return) and equally weighted (ew‐return) portfolio
returns, as well as the high–low portfolio return spread, separately for each beta methodology. In addition, the table provides Newey‐West (1987) t statistics for
the high–low spread (shown in parentheses) to test whether the spread is significant or not. It also provides P values, obtained from time‐series block
bootstrapping, for the Patton and Timmermann (2010) monotonic relation (MR) test. The returns are expressed in percentages.
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F IGURE 1 Betas and portfolio returns. The figure shows the annualized returns in percentages of the five quintile portfolios sorted by
betas over the sample period from January 1996 to April 2016. At the end of each month, we sort the stocks into quintiles based on their
betas. The first portfolio then contains the stocks with the lowest beta, while the last portfolio contains the stocks with the highest beta. We
then compute the annualized value‐weighted and equally weighted returns over the next month for each quintile portfolio, month and beta
methodology. Exact numerical values for the betas and returns of each portfolio are shown in Table 2. The four panels present the results for
four different beta methods. BV, Buss and Vilkov (2012); CCJV, Chang, Christoffersen, Jacobs, and Vainberg (2011); FGK, French, Groth,
and Kolari (1983) [Color figure can be viewed at wileyonlinelibrary.com]
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the value‐weighted returns shows that the pattern is closest to linear compared with the historical, FGK, and
CCJV betas. The equally weighted return for both the historical and BV beta methods displays a monotonically
increasing risk‐return relation.

4.2 | Fama–MacBeth regressions

We adopt the Fama and MacBeth (1973; FM) regression approach to further examine the risk‐return relationship,
and in particular, to explore its robustness to a wide range of firm‐specific characteristics. The previous literature
supports the existence of a firm size effect (Banz, 1981), a book‐to‐market effect (Basu, 1983), a momentum effect
(Jegadeesh & Titman, 1993), an idiosyncratic volatility effect (Ang, Hodrick, Xing, & Zhang, 2006), a reversal effect
(Jegadeesh, 1990; Lehmann, 1990), a maximum daily return effect (Bali, Cakici, & Whitelaw, 2011) and an
illiquidity effect (Amihud, 2002). The calculation of firm size and book‐to‐market follows Fama and French (1992).
We define the firm size (size) as the natural logarithm of the market capitalization from the previous day, where
market capitalization is equal to the stock price multiplied by the number of shares outstanding. Book‐to‐market
(BM) is the natural logarithm of book value to market value, where book value is the book value of common equity
plus balance‐sheet deferred taxes. Idiosyncratic volatility (ivol) is the standard deviation of the residuals from a
regression of the excess stock return on the excess market return and the size (SMB) and book‐to‐market (HML)
factors of Fama and French (1993), again using daily returns over the previous one year.6 The momentum measure
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TABLE 3 Fama–MacBeth regressions for general betas

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

Constant 0.77 0.61 1.42 0.37 1.29 1.28 1.47 1.28
(2.70) (2.02) (4.26) (0.92) (1.69) (1.67) (1.96) (1.67)

Historical 0.21 −0.05
(0.56) (−0.16)

FGK 0.62 0.14
(1.27) (0.36)

CCJV −0.41 −0.40
(−2.28) (−3.08)

BV 0.53 0.22
(1.06) (0.43)

Size −0.14 −0.15 −0.11 −0.14
(−2.28) (−2.44) (−1.89) (−2.32)

BM 0.02 0.02 0.02 0.02
(0.32) (0.28) (0.33) (0.26)

ivol 2.99 −1.14 6.15 −11.00
(0.18) (−0.07) (0.35) (−0.60)

VRP 0.06 −0.18 −0.21 −0.19
(0.06) (−0.15) (−0.18) (−0.13)

Momentum 0.03 0.06 0.19 0.11
(0.07) (0.18) (0.52) (0.32)

Illiquidity 0.59 0.57 0.35 0.54
(1.74) (1.68) (0.92) (1.62)

Lag return −1.54 −1.59 −1.41 −1.62
(−1.95) (−2.01) (−1.64) (−2.05)

Return_m −0.35 −0.22 1.51 −0.24
(−0.15) (−0.10) (0.61) (−0.10)

Adj R2 (%) 6.66 6.32 2.01 7.27 16.64 16.67 15.14 16.70

Note. The table shows the results for the Fama and MacBeth (1973) regression of monthly stock returns on betas and firm characteristics. The sample period is
from January 1996 to April 2016. We report the average of coefficients and their t statistics (shown in parentheses) of the independent variables.

6The daily market excess return, SMB, HML and the risk‐free rate are taken from Kenneth French’s website, http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/datalibrary.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data


(Momentum) is the cumulative daily stock return from month t − 12 to month t− 1. The illiquidity measure
(Illiquidity) is the average of the ratio of the daily absolute return to the (dollar) trading volume over the previous
year. Following Jegadeesh (1990) and Lehmann (1990), the reversal measure (lag return) is defined as the monthly
return over the previous month. The maximum daily return (return_m) is defined as the maximum daily return
over the previous month. As in Carr and Wu (2008), the variance risk premium (VRP) is defined as the difference
between realized variance and option‐implied variance:

=VRP t σ t σ t( ) ( )‐ ( )P
2

Q
2 (11)

where σ t( )P
2 and σ t( )Q

2 denote the realized and implied variances in month t, respectively.
Table 3 presents the results for the Fama and MacBeth (1973) regressions of stock returns on the different measures

of beta and firm‐specific characteristics. Models 1–4 include only beta in the Fama and MacBeth (1973) regression.
When beta is the only independent variable, the coefficients of these betas are not significant except in the case of the
CCJV beta, where the coefficient is actually negative. When firm‐specific variables are included in the Fama and
MacBeth (1973) regressions in Models 5–8, we find that beta still has no significant explanatory power for stock returns
except for the CCJV beta, which again has a negative coefficient. Additionally, we find that size and lagged return are
significantly and negatively related to stock returns.
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TABLE 4 Portfolio analysis on implied downside betas

Low 2 3 4 High High–low MR_p

Panel A. Historical downside beta

Beta 0.48 0.76 0.96 1.19 1.72 1.24 –
vw‐return 0.71 0.80 0.73 0.90 0.86 0.15

0.35
(3.26) (3.12) (2.58) (2.55) (1.69) (0.34) –

ew‐return 0.82 0.97 1.03 1.10 1.16 0.33
0.10

(3.65) (3.52) (3.21) (2.82) (2.05) (0.72) –
Panel B. FGK downside beta

Beta 0.24 0.47 0.62 0.77 1.07 0.83 –
vw‐return 0.74 0.76 0.71 0.99 0.67 −0.07

0.88
(3.16) (2.84) (2.34) (2.80) (1.30) (−0.18) –

ew‐return 0.83 0.90 1.00 1.21 1.00 0.17
0.57

(3.42) (3.01) (2.87) (2.96) (1.82) (0.41) –
Panel C. BV downside beta

Beta 0.70 0.89 1.03 1.21 1.63 0.93 –
vw‐return 0.64 0.90 0.86 0.89 1.07 0.43

0.12
(2.66) (3.33) (2.71) (2.27) (1.69) (0.78) –

ew‐return 0.79 0.92 1.09 1.06 1.19 0.39
0.27

(3.25) (3.07) (3.28) (2.54) (1.92) (0.76) –
Note. The five quintile portfolios are sorted by downside betas over the sample period from January 1996 to April 2016. At the end of each month, we sort the
stocks into quintiles based on their downside betas. The first portfolio then contains the stocks with the lowest market downside beta, while the last portfolio
contains the stocks with the highest market downside beta. We then compute the value‐weighted and equally weighted monthly returns over the next month.
The table reports the time‐series averages of the value‐weighted (vw‐return) and equally weighted (ew‐return) portfolio returns, as well as the high–low
portfolio return spread, separately for each downside beta methodology. In addition, the table provides Newey and West (1987) t statistics for the high–low
spread (shown in parentheses) to test whether the spread is significant or not. It also provides P values, obtained from time‐series block bootstrapping, for the
Patton and Timmermann (2010) MR test. The returns are expressed in percentages.



5 | OPTION ‐IMPLIED DOWNSIDE BETAS AND THE CROSS SECTION OF
STOCK RETURNS

5.1 | Portfolio analysis

We sort the individual securities in the S&P 500 index into five groups at the end of each month by each of the four
measures of downside beta. Portfolio 1 includes firms with the lowest downside betas and portfolio 5 contains firms
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FIGURE 2 Downside betas and portfolio returns. The figure shows the annualized returns in percentages of the five quintile portfolios
sorted by downside betas over the sample period from January 1996 to April 2016. At the end of each month, we sort the stocks into quintiles
based on their downside betas. The first portfolio contains the stocks with the lowest downside market beta, while the last portfolio
contains the stocks with the highest downside market beta. We then compute the annualized value‐weighted and equally weighted returns
over the next month for each quintile portfolio, month and downside beta methodology. Exact numerical values for the returns and betas of
each portfolio are shown in Table 4. The three panels present the results for different downside beta methods. BV, Buss and Vilkov (2012);
CCJV, Chang, Christoffersen, Jacobs, and Vainberg (2011); FGK, French, Groth, and Kolari (1983) [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com


with the highest downside betas. We then calculate the annualized value‐weighted and equally weighted return for
each beta method, for each portfolio in the next month. The procedure is repeated for all months. Table 4 provides
a summary of the results. The table shows that the high–low return spread (the difference between the fifth and
first portfolio returns) is positive for the historical, FGK, and BV downside beta methods in most cases. Taking the
value‐weighted returns as an example, the high–low return spread is 0.15% per month for the historical downside
beta in Panel A, −0.07% per month for the FGK downside beta in Panel B and 0.43% per month for the BV
downside beta in Panel C. The portfolio sorting method thus suggests that there is a positive relationship between
the historical and BV downside betas, and stock returns, although in neither case is the difference statistically
significant at conventional levels. As in the case of standard beta, the BV implied downside beta gives the biggest
value‐weighted and equally weighted high–low return spread between the extreme portfolios. From the MR test in
the last column of Table 4, we find that all MR P values are greater than 10% for the value‐weighted returns,
suggesting that there is no monotonically increasing relation between downside beta and either value‐weighted or
equal‐weighted returns.

Comparing the results in Table 4 with those in Table 2, we see that the BV implied downside beta performs better
than the BV standard beta in terms of the positive and linear beta‐return relation. More specifically, the BV downside
beta gives an average high–low return spread of 0.43% per month for value‐weighted returns, compared with a
difference of 0.37% per month for the BV standard beta. The result that the BV downside beta outperforms the BV
standard beta is consistent with published research (e.g., Ang et al., 2006; Post & Van Vliet, 2004). For instance, Post
and Van Vliet (2004) find that the mean semivariance CAPM strongly outperforms the traditional mean‐variance
CAPM in terms of its ability to explain the cross section of U.S. stock returns.
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TABLE 5 Fama–MacBeth regressions for implied downside beta

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Constant 0.77 0.74 0.48 1.33 1.21 1.23
(2.74) (3.04) (1.13) (1.76) (1.62) (1.60)

His(−) 0.21 −0.11
(0.56) (−0.41)

FGK(−) 0.52 0.05
(1.09) (0.16)

BV(−) 0.42 0.13
(0.80) (0.25)

Size −0.13 −0.14 −0.13
(−2.23) (−2.28) (−2.19)

BM 0.03 0.01 0.02
(0.36) (0.20) (0.24)

ivol 3.55 0.45 −8.63
(0.22) (0.03) (−0.45)

VRP 0.18 0.40 0.09
(0.16) (0.36) (0.06)

Momentum 0.02 0.07 0.13
(0.06) (0.18) (0.37)

Illiquidity 0.58 0.48 0.51
(1.69) (1.37) (1.50)

Lag return −1.61 −1.63 −1.72
(−2.00) (−1.97) (−2.13)

Return max −0.09 0.50 0.44
(−0.04) (0.21) (0.19)

Adj R2 (%) 6.44 4.68 7.15 16.46 15.97 16.32

Note. The table shows the results for the Fama and MacBeth (1973) regression of one‐month ahead monthly stock returns on downside betas and firm‐specific
characteristics. The downside betas include the historical beta (His(−)), the FGK downside beta (FGK(−)), and the BV downside beta (BV(−)). The sample
period is from January 1996 to April 2016. We report the coefficients and the t statistics (shown in parentheses) of the independent variables.
*, **, and *** denote the 10%, 5%, and 1% significance levels, respectively.



Figure 2 shows that the three downside beta methods display a noisy beta‐return relation across different quintile
portfolios for the value‐weighted returns. For the value‐weighted portfolios, the return difference between the extreme
quintile portfolios is more pronounced for the BV downside beta than for the historical and FGK downside betas. The
FGK downside beta gives the flattest beta‐return relation, while the BV downside beta displays a relatively increasing
risk‐return relation. The equally weighted quintile portfolio returns for the historical and BV downside betas display a
monotonically increasing risk‐return relation.

5.2 | Fama–MacBeth regressions

We run the Fama and MacBeth (1973) monthly regression of stock returns on each of the three measures of downside
beta, and include the same set of control variables, namely, firm size, book‐to‐market ratio, idiosyncratic volatility, the
variance risk premium, momentum, lagged return, maximum daily return, and illiquidity. Table 5 presents the results
of this analysis. Models 1–3 show the results for the Fama and MacBeth (1973) regression including only downside beta.
For all three approaches, the coefficient on downside beta is positive but not significant. When the control variables are
added in Models 4–6, the coefficient on downside beta remains insignificant in all three cases. The Fama and MacBeth
(1973) regression approach therefore suggests that there is no significant relationship between returns and
downside beta.

6 | CONCLUSION

Motivated by the earlier research of Buss and Vilkov (2012), this paper further investigates the relation between option‐
implied betas and stock returns. Consistent with the findings of Buss and Vilkov (2012), using portfolio analysis, we
find that the BV beta outperforms other beta methods, giving the biggest positive high–low return spread. However, the
return spread is not statistically significant.

We introduce measures of option‐implied downside beta by combining the downside correlation of Ang et al. (2002)
and the option‐implied moments of Bakshi et al. (2003). When sorting stocks by downside beta, we again find that the
BV downside beta yields the biggest high–low return spread. Moreover, a stronger beta‐return relation is obtained using
the BV downside beta than the BV standard beta.

We further explore the robustness of the beta‐return relation using the Fama and MacBeth (1973) regression
methodology. We find that using either standard beta or downside beta, the beta‐return relationship is not significant
nor is it robust to the inclusion of firm characteristics. We, therefore, conclude that there is no robust relation between
option‐implied beta and stock returns.
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APPENDIX

Estimation of risk‐neutral moments

To compute risk‐neutral model‐free variance and skewness, we follow the formulas in Bakshi and Madan (2000) and
Bakshi et al. (2003). Bakshi and Madan (2000) show that the continuum of characteristic functions of risk‐neutral
return density and the continuum of options are equivalent classes of spanning securities. Any payoff function with
bounded expectation can be spanned by out‐of‐the‐money (OTM) European calls and puts. Based on this insight,
Bakshi et al. (2003) formalize a mechanism to extract the variance and skewness of the risk‐neutral return density from
a contemporaneous collection of OTM calls and puts. Their method relies on a continuum of strikes and does not
incorporate specific assumptions about an underlying model. The two moments can be expressed as functions of
payoffs on a quadratic and a cubic contract.
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The prices of the quadratic and cubic contracts are given by
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where S and K are the underlying stock price and strike price, respectively, and C and P are the call and put prices,
respectively.

Using the prices of these contracts, the risk‐neutral moments can be calculated as:
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