FDI and Firm Productivity: The Role of Financial Constraints

Jian Wang1 Xiao Wang2 Shang-Jin Wei3

1Federal Reserve Bank of Dallas
2University of North Dakota
3Columbia University, CEPR, CIER and NBER

May 12, 2014
PBC School of Finance, Tsinghua University
Advantages of FDI firms

- Higher productivity
 - Direct effect: Introduce advanced technology/skills
 - Indirect effect: Technology/human capital spillovers
Advantages of FDI firms

- Higher productivity
 - Direct effect: Introduce advanced technology/skills
 - Indirect effect: Technology/human capital spillovers
- Less financially constrained
 - Improve the host countries’ financial conditions
Advantages of FDI firms

- Higher productivity
 - Direct effect: Introduce advanced technology/skills
 - Indirect effect: Technology/human capital spillovers

- Less financially constrained
 - Improve the host countries’ financial conditions

- The above two factors may not work in the same direction.
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
 - Distortions caused by institutional arrangements
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
 - Distortions caused by institutional arrangements
 - China: state-owned banks vs. private firms
 - Song et al. (2011), Dollar and Wei (2007)
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
 - Distortions caused by institutional arrangements
 - China: state-owned banks vs. private firms
 - Song et al. (2011), Dollar and Wei (2007)

- FDI firms can have lower productivity than local firms.
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
 - Distortions caused by institutional arrangements
 - China: state-owned banks vs. private firms
 - Song et al. (2011), Dollar and Wei (2007)

- FDI firms can have lower productivity than local firms.
 - Show this in a simple theoretical model.
A case with inefficient local financial markets

- Local firms face serious financial constraints.
 - Underdevelopment of financial markets
 - Distortions caused by institutional arrangements
 - China: state-owned banks vs. private firms
 - Song et al. (2011), Dollar and Wei (2007)

- FDI firms can have lower productivity than local firms.
 - Show this in a simple theoretical model.
 - Find empirical evidence in the firm-level data of China.
A simple theoretical model

- Local entrepreneurs draw productivity randomly from an exogenous distribution.
A simple theoretical model

- Local entrepreneurs draw productivity randomly from an exogenous distribution.
- Entrepreneurs have to pay fixed start-up costs, but are financially constrained.
A simple theoretical model

- Local entrepreneurs draw productivity randomly from an exogenous distribution.
- Entrepreneurs have to pay fixed start-up costs, but are financially constrained.
- Entrepreneurs with higher productivity are financially less constrained.
A simple theoretical model

- Local entrepreneurs draw productivity randomly from an exogenous distribution.
- Entrepreneurs have to pay fixed start-up costs, but are financially constrained.
- Entrepreneurs with higher productivity are financially less constrained.
 - High-productivity firms are financed by local banks for start-up costs.
A simple theoretical model

- Local entrepreneurs draw productivity randomly from an exogenous distribution.
- Entrepreneurs have to pay fixed start-up costs, but are financially constrained.
- Entrepreneurs with higher productivity are financially less constrained.
 - High-productivity firms are financed by local banks for start-up costs.
- FDI finances firms with middle-range productivity.
Empirical findings in the firm-level data of China

- TFP of new firms decreases with their FDI shares.
Empirical findings in the firm-level data of China

- TFP of new firms decreases with their FDI shares.
 - More pronounced in financially more constrained sectors
Empirical findings in the firm-level data of China

- TFP of new firms decreases with their FDI shares.
 - More pronounced in financially more constrained sectors
- Higher FDI shares in financially more constrained sectors
Empirical findings in the firm-level data of China

- TFP of new firms decreases with their FDI shares.
 - More pronounced in financially more constrained sectors

- Higher FDI shares in financially more constrained sectors
 - More pronounced in more recent data
Empirical findings in the firm-level data of China

- TFP of new firms decreases with their FDI shares.
 - More pronounced in financially more constrained sectors

- Higher FDI shares in financially more constrained sectors
 - More pronounced in more recent data

- Consistent with China’s capital account liberalization
A well-known puzzle for FDI

- Theory: More productive FDI firms \Rightarrow spillovers to local firms
A well-known puzzle for FDI

- Theory: More productive FDI firms \Rightarrow spillovers to local firms

Our results suggest that

- Previous mixed findings are not surprising.
Policy implications and related literature

- A well-known puzzle for FDI
 - Theory: More productive FDI firms \Rightarrow spillovers to local firms

- Our results suggest that
 - Previous mixed findings are not surprising.
 - FDI could reduce the host country’s welfare.
Policy implications and related literature

- A well-known puzzle for FDI
 - Theory: More productive FDI firms \Rightarrow spillovers to local firms

- Our results suggest that
 - Previous mixed findings are not surprising.
 - FDI could reduce the host country’s welfare.
 - Negative effect on local firm’s credit constraint: Harrison and McMillan (2003)
Policy implications and related literature

- Reform domestic financial markets to improve the effect of FDI
 - Efficient local financial markets \Rightarrow local firms less financial constrained

Policy implications and related literature

- Reform domestic financial markets to improve the effect of FDI
 - Efficient local financial markets \implies local firms less financial constrained
 - FDI more likely driven by high productivity
Policy implications and related literature

- Reform domestic financial markets to improve the effect of FDI
 - Efficient local financial markets \Rightarrow local firms less financial constrained
 - FDI more likely driven by high productivity
- Economies with better financial institutions benefit more from FDI for economic growth.
 - Alfaro et al. (2004)
 - Better local financial institutions finance technology spillovers more efficiently.

Efficient local financial markets \Rightarrow local firms less financial constrained
FDI more likely driven by high productivity
Economies with better financial institutions benefit more from FDI for economic growth.
Alfaro et al. (2004)
Better local financial institutions finance technology spillovers more efficiently.
Policy implications and related literature

- The more FDI, the better?

FDI, Firm Productivity and Financial Constraints
Policy implications and related literature

- The more FDI, the better?
 - FDI may be an indicator of inefficient local financial markets
Policy implications and related literature

- The more FDI, the better?
 - FDI may be an indicator of inefficient local financial markets
 - Improving local financial markets can decrease FDI inflows.
Policy implications and related literature

- The more FDI, the better?
 - FDI may be an indicator of inefficient local financial markets
 - Improving local financial markets can decrease FDI inflows.
 - No policy is needed to maintain FDI inflows in this case.
 - Subsidize low-productivity firms at the cost of high-productivity firms.
Data
Data: China Annual Surveys of Industrial Production

- Chinese manufacturing firms with sales ≥ $600,000 between 2000 and 2007
Data: China Annual Surveys of Industrial Production

- Chinese manufacturing firms with sales \(\geq 600,000 \) between 2000 and 2007
- 120,000 observations per year
Data: China Annual Surveys of Industrial Production

- Chinese manufacturing firms with sales \geq $600,000 between 2000 and 2007
- 120,000 observations per year
- Basic firm information: identification, registration type, start year, employment, etc.
Data: China Annual Surveys of Industrial Production

- Chinese manufacturing firms with sales \geq $600,000 between 2000 and 2007
- 120,000 observations per year
- Basic firm information: identification, registration type, start year, employment, etc.
- Balance sheet: total assets, liabilities, owner’s equity, etc.
Data: China Annual Surveys of Industrial Production

- **Chinese manufacturing firms with sales \geq $600,000** between 2000 and 2007
- **120,000 observations per year**
- **Basic firm information**: identification, registration type, start year, employment, etc.
- **Balance sheet**: total assets, liabilities, owner’s equity, etc.
 - **FDI share**: share of capital from Hong Kong, Macau, Taiwan and foreign countries
Data: China Annual Surveys of Industrial Production

- Chinese manufacturing firms with sales \geq $600,000$ between 2000 and 2007
- 120,000 observations per year
- Basic firm information: identification, registration type, start year, employment, etc.
- Balance sheet: total assets, liabilities, owner’s equity, etc.
 - FDI share: share of capital from Hong Kong, Macau, Taiwan and foreign countries
- Income statement: total sales, production, exports, income, costs, etc.
Follow Ackerberg, Caves and Frazer (2006)

- Assumption: Productivity affects firms’ decision on labor and capital

\[y_{it} = \beta_l l_{it} + \beta_k k_{it} + \omega_{it} + \epsilon_{it} \]

Estimation result: \(\hat{\omega}_{it} \Rightarrow \tilde{\omega}_{it} \)

\[\tilde{\omega}_{it} = \frac{\hat{\omega}_{it} - \mu_t}{\sigma_t} \]

- \(\mu_t \): Industry mean
- \(\sigma_t \): Industry standard deviation
Financial vulnerability

- Measure financial vulnerability
 - Measuring financial constraints at the firm level: endogeneity
Measure financial vulnerability

- Measuring financial constraints at the firm level: endogeneity
- Variables to capture industry characteristics (e.g., Rajan and Zingales (1998))
Financial vulnerability

- Measure financial vulnerability
 - Measuring financial constraints at the firm level: endogeneity
 - Variables to capture industry characteristics (e.g., Rajan and Zingales (1998))
 - Five variables calculated from publicly traded US firms (Manova, et al. (2013))
Financial vulnerability

- Higher values indicate financially more vulnerable.
Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: \(\frac{\text{capital expenditure} - \text{operation cash flow}}{\text{capital expenditure}} \)
 - R&D intensity: \(\frac{\text{R&D expenditure}}{\text{total sales}} \)
 - Inventory intensity: \(\frac{\text{inventory}}{\text{total sales}} \)
 - Trade credit intensity: \(\frac{\text{account payable}}{\text{total assets}} \)
 - Asset tangibility: \(\frac{\text{tangible assets}}{\text{total assets}} \)
Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: \((\text{capital expenditure} - \text{operation cash flow})/\text{capital expenditure}\)
 - R&D intensity: \(\text{R&D expenditure}/\text{total sales}\)

Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: \(\frac{\text{capital expenditure} - \text{operation cash flow}}{\text{capital expenditure}} \)
 - R&D intensity: \(\frac{\text{R&D expenditure}}{\text{total sales}} \)
 - Inventory intensity: \(\frac{\text{Inventory}}{\text{total sales}} \)
Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: (capital expenditure - operation cash flow)/capital expenditure
 - R&D intensity: R&D expenditure/total sales
 - Inventory intensity: Inventory/total sales

- Higher values indicate financially less vulnerable.
Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: \((\text{capital expenditure} - \text{operation cash flow})/\text{capital expenditure}\)
 - R&D intensity: \(\text{R&D expenditure}/\text{total sales}\)
 - Inventory intensity: \(\text{Inventory}/\text{total sales}\)

- Higher values indicate financially less vulnerable.
 - Trade credit intensity: \(\text{account payable}/\text{total assets}\)
Financial vulnerability

- Higher values indicate financially more vulnerable.
 - External finance dependence: \(\frac{(\text{capital expenditure} - \text{operation cash flow})}{\text{capital expenditure}} \)
 - R&D intensity: \(\frac{\text{R&D expenditure}}{\text{total sales}} \)
 - Inventory intensity: \(\frac{\text{Inventory}}{\text{total sales}} \)

- Higher values indicate financially less vulnerable.
 - Trade credit intensity: \(\frac{\text{account payable}}{\text{total assets}} \)
 - Asset tangibility: \(\frac{\text{tangible assets}}{\text{total assets}} \)
Financial vulnerability: statistics

<table>
<thead>
<tr>
<th>Variable</th>
<th>25th percentile</th>
<th>75th percentile</th>
</tr>
</thead>
<tbody>
<tr>
<td>External finance dependence</td>
<td>-0.27</td>
<td>0.06</td>
</tr>
<tr>
<td>Inventory ratio</td>
<td>0.13</td>
<td>0.18</td>
</tr>
<tr>
<td>R&D ratio</td>
<td>0.01</td>
<td>0.02</td>
</tr>
<tr>
<td>Tangibility</td>
<td>0.20</td>
<td>0.40</td>
</tr>
<tr>
<td>Trade credit</td>
<td>0.05</td>
<td>0.08</td>
</tr>
<tr>
<td>First principal component (FPC)</td>
<td>-0.79</td>
<td>0.79</td>
</tr>
</tbody>
</table>

- Obtained from Kroszner et al. (2007) and Fisman and Love (2003)
- First principal component (FPC)
 - Orthogonal transformation: 5 measures \rightarrow 5 linearly uncorrelated principal components
 - FPC accounts for the largest portion of variance.
Empirical Results
Result 1: firm productivity and FDI shares
FDI firms more productivity?

For every year:

\[\text{Productivity}_{ijp} = \alpha + \beta FDI_{ijp} + \gamma_1 \text{Firmcontrol}_i + \gamma_2 \text{Inddummy}_j + \gamma_3 \text{Locadummy}_p + \epsilon_{ijp} \]

- \(FDI_{ijp} \): FDI share
- \(\text{Firmcontrol}_i \): \(\log(\text{employment}), \log(\text{age}+1), \text{export/output} \)
- \(\text{Inddummy}_j \): 2-digit industry dummies
- \(\text{Locadummy}_p \): Province dummies, economic zone dummies
Result for 2000

<table>
<thead>
<tr>
<th>Model</th>
<th>Coefficient</th>
<th>std. err.</th>
<th>t-value</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDI share</td>
<td>0.168</td>
<td>0.0121</td>
<td>13.86</td>
<td>0.14</td>
</tr>
<tr>
<td>Employment</td>
<td>-0.054</td>
<td>0.0027</td>
<td>-20.34</td>
<td>-0.06</td>
</tr>
<tr>
<td>Age</td>
<td>-0.185</td>
<td>0.0038</td>
<td>-48.84</td>
<td>-0.19</td>
</tr>
<tr>
<td>Export ratio</td>
<td>0.001</td>
<td>0.0001</td>
<td>8.28</td>
<td>0.00</td>
</tr>
<tr>
<td>Economic zone</td>
<td>0.033</td>
<td>0.0094</td>
<td>3.52</td>
<td>0.01</td>
</tr>
</tbody>
</table>

R-squared: 0.12

of Observations: 89,905

\[\text{Productivity}_{ijpt} = \alpha + \beta FDI_{ijpt} + \gamma_1 \text{Firmcontrol}_{it} + \gamma_2 \text{Indcontrol}_{jt} + \gamma_3 \text{Locacontrol}_{pt} + \epsilon_{ijpt} \]

- \text{Indcontrol}_{jt}: HH index (competitiveness)
- \text{Locacontrol}_{pt}:
 - Market size: log(RGDP)
 - Market demand: log(RGDP per capita), log(retail sales)
 - Infrastructure: Railway, road
 - R&D: Number of scientists
 - Openness: import/GDP, export/GDP

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>std. err.</th>
<th>t-value</th>
<th>95% Conf. Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDI share</td>
<td>0.0218</td>
<td>0.0071</td>
<td>3.06</td>
<td>0.0078 0.0358</td>
</tr>
<tr>
<td>Employment</td>
<td>-0.1030</td>
<td>0.0020</td>
<td>-52.79</td>
<td>-0.1068 -0.0992</td>
</tr>
<tr>
<td>Age</td>
<td>0.0990</td>
<td>0.0025</td>
<td>39.21</td>
<td>0.0941 0.1040</td>
</tr>
<tr>
<td>Export ratio</td>
<td>0.0000</td>
<td>0.0001</td>
<td>-0.20</td>
<td>-0.0001 0.0001</td>
</tr>
</tbody>
</table>

of Observations 912,343 # of Groups 313,150
Diminishing elasticity of productivity w.r.t. FDI shares
Test: FDI’s productivity advantage diminished?

- Seemingly Uncorrelated Regression
- Cross-model comparison
 - $H_0 : \beta^{t+1} = \beta^t$
 - $H_1 : \beta^{t+1} \neq \beta^t$
- A Wald Test
Productivity Elasticity of FDI Share Over Time

<table>
<thead>
<tr>
<th>Year</th>
<th>Elasticity</th>
<th>t-value</th>
<th>Cross-year Comparison</th>
<th>χ^2 Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>0.215</td>
<td>19.66</td>
<td>2002 vs. 2001</td>
<td>9.15***</td>
</tr>
<tr>
<td>2002</td>
<td>0.186</td>
<td>17.57</td>
<td>2003 vs. 2002</td>
<td>3.85**</td>
</tr>
<tr>
<td>2003</td>
<td>0.150</td>
<td>15.34</td>
<td>2004 vs. 2003</td>
<td>6.58***</td>
</tr>
<tr>
<td>2004</td>
<td>0.115</td>
<td>13.84</td>
<td>2005 vs. 2004</td>
<td>7.78***</td>
</tr>
<tr>
<td>2005</td>
<td>0.084</td>
<td>10.29</td>
<td>2006 vs. 2005</td>
<td>7.33***</td>
</tr>
<tr>
<td>2006</td>
<td>0.121</td>
<td>15.80</td>
<td>2007 vs. 2006</td>
<td>11.37***</td>
</tr>
<tr>
<td>2007</td>
<td>0.076</td>
<td>10.55</td>
<td>2001 vs. 2007</td>
<td>18.73***</td>
</tr>
</tbody>
</table>
TFP of new entrants decreases with the FDI share

<table>
<thead>
<tr>
<th>Year</th>
<th>Coefficient</th>
<th>std. err.</th>
<th>t-value</th>
<th>Coefficient</th>
<th>std. err.</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>-0.274</td>
<td>0.123</td>
<td>-2.220</td>
<td>0.159</td>
<td>0.012</td>
<td>13.040</td>
</tr>
<tr>
<td>2001</td>
<td>-0.101</td>
<td>0.072</td>
<td>-1.410</td>
<td>0.203</td>
<td>0.011</td>
<td>18.390</td>
</tr>
<tr>
<td>2002</td>
<td>-0.215</td>
<td>0.088</td>
<td>-2.440</td>
<td>0.184</td>
<td>0.011</td>
<td>17.330</td>
</tr>
<tr>
<td>2003</td>
<td>-0.129</td>
<td>0.062</td>
<td>-2.080</td>
<td>0.144</td>
<td>0.010</td>
<td>14.630</td>
</tr>
<tr>
<td>2004</td>
<td>-0.033</td>
<td>0.040</td>
<td>-0.820</td>
<td>0.111</td>
<td>0.008</td>
<td>13.150</td>
</tr>
<tr>
<td>2005</td>
<td>-0.070</td>
<td>0.047</td>
<td>-1.510</td>
<td>0.077</td>
<td>0.008</td>
<td>9.360</td>
</tr>
<tr>
<td>2006</td>
<td>-0.003</td>
<td>0.045</td>
<td>-0.070</td>
<td>0.114</td>
<td>0.008</td>
<td>14.740</td>
</tr>
<tr>
<td>2007</td>
<td>-0.041</td>
<td>0.044</td>
<td>-0.930</td>
<td>0.069</td>
<td>0.007</td>
<td>9.540</td>
</tr>
</tbody>
</table>

Wang, Wang, Wei

FDI, Firm Productivity and Financial Constraints
High-productivity FDI firms entered China before 2000.

- Before 2000: Performance requirements for FDI firms
- The requirements are removed after China joined the WTO.
A possible explanation

- High-productivity FDI firms entered China before 2000.
 - Before 2000: Performance requirements for FDI firms
 - The requirements are removed after China joined the WTO.
 - More sectors are opened to FDI.
 - More FDI driven by financial advantages
A possible explanation

- High-productivity FDI firms entered China before 2000.
 - Before 2000: Performance requirements for FDI firms
 - The requirements are removed after China joined the WTO.
 - More sectors are opened to FDI.
 - More FDI driven by financial advantages
- The shrinking difference in TFP is also caused by the fast catch-up by local firms.
New entrants and financial vulnerability

- Negative correlation between TFP and FDI share for new entrants
 - FDI due to financial advantages
 - Stronger evidence in financially more vulnerable industries?
New entrants and financial vulnerability

- Negative correlation between TFP and FDI share for new entrants
 - FDI due to financial advantages
 - Stronger evidence in financially more vulnerable industries?
- New entrants in two groups of industries
 - More financially vulnerable industries: top 25%
 - Less financially vulnerable industries: bottom 25%
New entrants and financial vulnerability

- Negative correlation between TFP and FDI share for new entrants
 - FDI due to financial advantages
 - Stronger evidence in financially more vulnerable industries?
- New entrants in two groups of industries
 - More financially vulnerable industries: top 25%
 - Less financially vulnerable industries: bottom 25%
New entrants and financial vulnerability

For each group, regress

\[Productivity_{ijp} = \alpha + \beta FDI_{ijp} + \gamma_1 Firmcontrol_i + \gamma_2 Inddummy_j + \gamma_3 Locadummy_p + \epsilon_{ijp} \]

Test if \(\beta \) is the same for these two groups

- \(H0 : \beta^{25th} = \beta^{75th} \)
- \(H1 : \beta^{25th} \neq \beta^{75th} \)
Results

<table>
<thead>
<tr>
<th>Less vulnerable</th>
<th>More vulnerable</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. Fin.</td>
<td>-0.039 (0.045)</td>
<td>4391</td>
</tr>
<tr>
<td></td>
<td>-0.184*** (0.044)</td>
<td>4460</td>
</tr>
<tr>
<td>Inv.</td>
<td>0.008 (0.037)</td>
<td>6922</td>
</tr>
<tr>
<td></td>
<td>-0.125*** (0.031)</td>
<td>7459</td>
</tr>
<tr>
<td>R&D</td>
<td>-0.026 (0.026)</td>
<td>14185</td>
</tr>
<tr>
<td></td>
<td>-0.159** (0.045)</td>
<td>4641</td>
</tr>
<tr>
<td>Tang.</td>
<td>-0.091*** (0.040)</td>
<td>4575</td>
</tr>
<tr>
<td>T. Credit</td>
<td>-0.088 (0.070)</td>
<td>1725</td>
</tr>
<tr>
<td></td>
<td>-0.128*** (0.042)</td>
<td>5412</td>
</tr>
<tr>
<td>FPC</td>
<td>-0.024 (0.038)</td>
<td>6860</td>
</tr>
<tr>
<td></td>
<td>-0.184*** (0.040)</td>
<td>4820</td>
</tr>
</tbody>
</table>

Wang, Wang, Wei: FDI, Firm Productivity and Financial Constraints
Result 2: FDI share and financial vulnerability
FDI shares and financial vulnerability

- FDI firms finance through: Parent firms/international markets
- If no financial friction: FDI share is equalized across sectors
- Financial friction: FDI share should be higher in financially more vulnerable industries

\[FDI\text{ share}_{ijp} = \alpha + \beta \text{Finvul}_i + \gamma_1 \text{Firmcontrol}_i + \gamma_2 \text{Inddummy}_j + \gamma_3 \text{Locadummy}_p + \epsilon_{ijp} \]
Higher FDI Shares in Financially More Vulnerable Sectors

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2007</th>
<th>χ^2</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. Fin.</td>
<td>0.007***</td>
<td>0.016***</td>
<td>10.08***</td>
<td></td>
</tr>
<tr>
<td>Inv. ratio</td>
<td>0.017</td>
<td>0.323***</td>
<td>68.84***</td>
<td></td>
</tr>
<tr>
<td>R&D ratio</td>
<td>0.009</td>
<td>0.016</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Tang.</td>
<td>-0.089***</td>
<td>-0.216***</td>
<td>115.45***</td>
<td></td>
</tr>
<tr>
<td>T. Credit</td>
<td>-0.299***</td>
<td>-0.160***</td>
<td>6.67***</td>
<td></td>
</tr>
<tr>
<td>FPC</td>
<td>0.006***</td>
<td>0.013***</td>
<td>42.35***</td>
<td></td>
</tr>
</tbody>
</table>

Wang, Wang, Wei

FDI, Firm Productivity and Financial Constraints
Higher FDI Shares in Financially More Vulnerable Sectors

<table>
<thead>
<tr>
<th></th>
<th>2000</th>
<th>2007</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. Fin.</td>
<td>0.007***</td>
<td>0.016***</td>
<td>10.08***</td>
</tr>
<tr>
<td>Inv. ratio</td>
<td>0.017</td>
<td>0.323***</td>
<td>68.84***</td>
</tr>
<tr>
<td>R&D ratio</td>
<td>0.009</td>
<td>0.016</td>
<td>0.30</td>
</tr>
<tr>
<td>Tang.</td>
<td>-0.089***</td>
<td>-0.216***</td>
<td>115.45***</td>
</tr>
<tr>
<td>T. Credit</td>
<td>-0.299***</td>
<td>-0.160***</td>
<td>6.67***</td>
</tr>
<tr>
<td>FPC</td>
<td>0.006***</td>
<td>0.013***</td>
<td>42.35***</td>
</tr>
</tbody>
</table>

Ex. Fin.: Externally Financed

Higher FDI Shares in Financially More Vulnerable Sectors

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient 2000</th>
<th>Coefficient 2007</th>
<th>χ^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ex. Fin.</td>
<td>0.007***</td>
<td>0.016***</td>
<td>10.08***</td>
</tr>
<tr>
<td>Inv. ratio</td>
<td>0.017</td>
<td>0.323***</td>
<td>68.84***</td>
</tr>
<tr>
<td>R&D ratio</td>
<td>0.009</td>
<td>0.016</td>
<td>0.30</td>
</tr>
<tr>
<td>Tang.</td>
<td>-0.089***</td>
<td>-0.216***</td>
<td>115.45***</td>
</tr>
<tr>
<td>T. Credit</td>
<td>-0.299***</td>
<td>-0.160***</td>
<td>6.67***</td>
</tr>
<tr>
<td>FPC</td>
<td>0.006***</td>
<td>0.013***</td>
<td>42.35***</td>
</tr>
</tbody>
</table>

Wang, Wang, Wei: FDI, Firm Productivity and Financial Constraints
FDI Share Grows in Financially Vulnerable Industries

Wang, Wang, Wei

FDI, Firm Productivity and Financial Constraints
Summary and future work

Summary

- Firm TFP decreases with the FDI share for new entrants in China’s data.
 - More pronounced in financially more constrained industries
Summary and future work

Summary
- Firm TFP decreases with the FDI share for new entrants in China’s data.
 - More pronounced in financially more constrained industries
- The FDI share is higher in financially more constrained industries.
 - More pronounced in more recent data
Summary and future work

Summary
- Firm TFP decreases with the FDI share for new entrants in China’s data.
 - More pronounced in financially more constrained industries
- The FDI share is higher in financially more constrained industries.
 - More pronounced in more recent data
- Evidence on FDI due to financial advantages
- Consistent with China’s capital account liberalization
Summary and future work

- **Summary**
 - Firm TFP decreases with the FDI share for new entrants in China’s data.
 - More pronounced in financially more constrained industries
 - The FDI share is higher in financially more constrained industries.
 - More pronounced in more recent data
 - Evidence on FDI due to financial advantages
 - Consistent with China’s capital account liberalization

- **Future work**
 - Loose ends in empirical exercises
 - Theoretical model